
Collaborative and transparent

Free Software development

Diploma thesis

by

Lydia Pintscher

Institute of Applied Informatics and Formal Description Methods (AIFB)

of the Faculty of Economics and Business Engineering

Referent: Prof. Dr. Rudi Studer

Betreuer: Basil Ell

Ich versichere hiermit wahrheitsgemäß, die Arbeit bis auf die dem Aufgabensteller

bereits bekannte Hilfe selbständig angefertigt, alle benutzten Hilfsmittel vollstän-

dig und genau angegeben und alles kenntlich gemacht zu haben, was aus Arbeiten

anderer unverändert oder mit Abänderungen entnommen wurde.

Karlsruhe,

for true friends and family

always close - no matter how far

Zusammenfassung, deutsch

In dieser Diplomarbeit wird der Entwicklungsprozess von zwei Freien Software

Projekten, Halo und Amarok, analysiert und verbessert. Halo ist eine Gruppe von

Erweiterungen für Semantic MediaWiki (SMW) und Amarok ist ein Musikabspiel-

programm. Sie repräsentieren ein breites Spektrum an Freien Software Projekten

mit ähnlichen Herausforderungen. Diese Diplomarbeit konzentriert sich darauf die

Kollaboration in den Projekten zu verbessern und die Transparenz in beiden Pro-

jekten zu erhöhen.

Im Rahmen dieser Diplomarbeit wurden mehrere Werkzeuge und Prozesse entwi-

ckelt. Diese beinhalten einen Weg eine Vision für ein Projekt zu erstellen, Werkzeu-

ge zur Verbesserung der Kollaboration in einem Team, Methoden und Werkzeuge

zur Verbesserung der Qualität der Software des Projekts, sowie Feature Tracking

und Planerstellung. Diese Werkzeuge und Prozesse passen sowohl zu den Idealen

als auch zur tagtäglichen Realität der Erstellung Freier Software und sind daher

für eine große Auswahl an Freien Software Projekten geeignet.

Abstract

In this thesis the development process of two Free Software projects, Halo and

Amarok, is analysed and improved. Halo is a set of extensions to Semantic Medi-

aWiki (SMW) and Amarok is a music player. They represent a broad spectrum

of Free Software projects with similar challenges. This thesis focuses on improv-

ing the collaboration in these projects and increasing the transparency of both

projects.

Through this thesis several tools and processes are developed. This includes a way

to create a vision for a project, tools to improve collaboration in a team, methods

and tools to improve the quality of the project’s software and feature tracking and

roadmap creation. These tools and processes fit both the ideals and day-to-day

realities of Free Software creation, making them suitable for a wide range of Free

Software projects.

Disclaimer

I am involved in both projects that are the subject of this thesis. I am the

Community Manager and Release Manager of Amarok as well as a member of the

Amarok Committee. Additionally I am a member of KDE’s Community Working

Group and manage several mentoring programs (Google Summer of Code, Google

Code-in and Season of KDE) for KDE, Amarok’s umbrella community. I am also

employed by ontoprise to work on community developer engagement for Halo. This

gives me a unique view of the problems and needs of both teams as well as a very

good position to implement the changes proposed in this thesis. However, it also

means that sometimes I can not cite sources for some of my observations because

I either received the information during communication with other team members

or because I observed them over the years of working with those communities.

Contents

List of Figures xvii

List of Tables xxi

List of URLs xxv

Acronyms xxix

1 Introduction 1

2 Fundamentals 3

2.1 Collaboration and transparency 3

2.2 Free Software and Open Source 4

2.3 Halo . 6

2.3.1 History . 8

2.3.2 Goals . 8

2.3.3 Culture . 8

2.3.4 Structure . 9

2.4 Amarok . 9

2.4.1 History . 10

2.4.2 Goals . 10

2.4.3 Culture . 11

2.4.4 Structure . 12

2.5 MediaWiki . 12

2.6 Semantic MediaWiki . 13

2.7 KDE . 14

3 Related Work 15

3.1 Mapping of development processes 15

3.2 Communication and coordination in distributed teams 16

3.3 Collaboratively working on a vision 18

3.4 Collaboratively creating a roadmap 22

3.5 Quality Assurance . 28

4 Analysis of the Current Development Processes 31

xiv Contents

4.1 Halo . 34

4.1.1 Release Cycle . 34

4.1.2 Activities . 35

4.1.2.1 Feature design 35

4.1.2.2 Writing code . 36

4.1.2.3 Quality assurance 37

4.1.2.4 User engagement and support 38

4.1.2.5 Contributor engagement 39

4.1.2.6 Promotion . 40

4.1.3 Problems . 40

4.1.3.1 Need for clearer communication of vision/goal . . 41

4.1.3.2 Need for better coordination of QA 41

4.1.3.3 Need for more transparency and coordination . . 42

4.1.3.4 Need for more user-input 42

4.1.3.5 Other problems 43

4.2 Amarok . 43

4.2.1 Release Cycle . 43

4.2.2 Activities . 45

4.2.2.1 Writing Code . 45

4.2.2.2 Release Management 46

4.2.2.3 Quality assurance 47

4.2.2.4 User engagement and support 48

4.2.2.5 Team engagement and management 49

4.2.2.6 Promotion . 50

4.2.3 Problems . 51

4.2.3.1 Lack of a clear vision/goal 52

4.2.3.2 Lack of a road map 52

4.2.3.3 Need for more transparency and coordination . . 53

4.2.3.4 Need for better coordination of QA 53

4.2.3.5 Other problems 53

4.3 Comparison and conclusion . 53

5 Design of an Improved Development Process 57

5.1 Requirements, expectations and constraints 57

5.2 Communication and coordination in distributed teams 59

5.2.1 Team and task awareness 59

5.2.2 Release schedule . 60

5.2.3 Code ownership . 61

5.2.4 Checklists . 62

5.2.5 Building trust through engagement 63

5.2.6 Connecting commits . 64

5.3 Collaboratively working on a vision 64

5.3.1 Creating and communicating a vision 65

5.3.2 Collecting updates for a vision 67

Contents xv

5.4 Collaboratively creating a roadmap 67

5.4.1 Life cycle of a feature request 67

5.4.2 Communicating expectations around feature requests . . . 67

5.4.3 Scope and difficulty of feature requests 69

5.4.4 Claiming and assigning feature requests 69

5.4.5 Feature request page and overview 70

5.5 Quality Assurance . 70

5.5.1 Encouraging testing by a large group 72

5.5.2 Making problematic areas more visible 72

5.6 Building blocks . 73

6 Implementation of an Improved Development Process 75

6.1 Roll-out scenario . 75

6.2 Communication and coordination in distributed teams 75

6.2.1 Team dashboard . 76

6.2.2 Release dashboard . 77

6.2.3 Release calendar . 78

6.2.4 Code ownership . 78

6.2.5 Checklists . 79

6.2.6 Commit hooks . 79

6.3 Collaboratively working on a vision 79

6.4 Collaboratively creating a roadmap 80

6.5 Quality Assurance . 80

6.5.1 Encouraging testing by a large group 81

6.5.2 Making problematic areas more visible 82

7 Evaluation 83

7.1 Survey . 83

7.1.1 Communication and coordination in distributed teams . . 84

7.1.2 Collaboratively working on a vision 85

7.1.3 Collaboratively creating a roadmap 87

7.1.4 Quality Assurance . 89

7.2 Changes in the openness of the development processes 89

8 Conclusions and Outlook 93

A Release timelines 97

B Interview questions 101

C Mark-up 103

D Checklists 111

D.1 Halo . 111

D.2 Amarok . 112

xvi Contents

E Evaluation questions 113

E.1 Halo . 113

E.2 Amarok . 114

Bibliography 117

List of Figures

2.1 Spectrum of driving forces of a Free Software project 5

2.2 Perceived mean distance between community layers of a Free Soft-

ware project . 5

2.3 SMWForum running Halo 1.5.1 6

2.4 Number of final Halo releases in 2009 and 2010 8

2.5 Amarok 2.3.2 . 9

2.6 Number of final Amarok releases between 2003 and 2010 11

3.1 Raynor’s mission framework . 18

3.2 Layout of the roadmap for Fedora 15 23

3.3 Layout of the wiki template for new feature requests for Fedora . 23

3.4 Layout of table showing most wanted features for SVN 24

3.5 Layout of roadmap for SVN . 24

3.6 Layout of a blueprint overview table for a project in Launchpad . 25

3.7 Layout of a blueprint details page for a project in Launchpad . . . 26

3.8 Example of an involvement and mood indicator of Get Satisfaction 28

4.1 Onion model of a typical Free Software project 32

4.2 Important artefacts in the development processes 32

4.3 Contributor roles involved in the development processes and the

output of their work . 33

4.4 Distribution of the ten interview partners based on how many years

they have been involved in Halo 34

4.5 Halo’s release cycle . 35

4.6 Number of opened bug reports in 2010 for Halo 37

4.7 Number of closed bug reports in 2010 for Halo 38

xviii List of Figures

4.8 Number of visits to smwforum.ontoprise.com in 2010 39

4.9 Distribution of the ten interview partners based on how many years

they have been involved in Amarok 43

4.10 Amarok’s release cycle . 44

4.11 Number of opened and closed bug reports in 2010 for Amarok . . 48

4.12 Number of visits to amarok.kde.org in 2010 50

4.13 QAfOSS Model for Halo and Amarok 55

5.1 Mock-up of the proposed team dashboard 60

5.2 Mock-up of the proposed release dashboard 61

5.3 Feature request states and their transitions 68

5.4 Mock-up of the proposed feature page 71

5.5 Mock-up of the proposed roadmap page 71

5.6 Mock-up of the current release section of the proposed roadmap page 72

5.7 Mock-up of proposed activity indicator for a very active and mod-

erately active person . 73

5.8 Building blocks and grouping of collaborative and transparent Free

Software development . 74

6.1 Team dashboard table for Halo 76

6.2 Build status results from Hudson for Halo 76

6.3 Bug chart on the team dashboard for Halo 77

6.4 Latest commits to Halo’s repository 78

6.5 Table of bugs for the current Halo release 78

6.6 Table of features tracked in the wiki for Halo 78

6.7 Example of a wiki page for one feature for Amarok 80

6.8 Example of a wiki page for one feature for Halo 81

6.9 Form to create and modify feature tracking pages for Halo 81

6.10 Weekly reminder about bugs that block an Amarok release 82

7.1 Result for evaluation question “Will the commit checklist help new

contributors?” (Halo, Amarok) . 84

7.2 Result for evaluation question “Will the team dashboard increase

transparency?” (Halo) . 85

7.3 Result for evaluation questions “Will the team dashboard improve

collaboration between contributors/contributors and users?” (Halo) 85

List of Figures xix

7.4 Result for evaluation question “Will the release dashboard increase

transparency?” (Halo) . 86

7.5 Result for evaluation questions“Will the release dashboard improve

collaboration between contributors/contributors and users?” (Halo) 86

7.6 Result for evaluation question “Will the new vision help the project

make better decisions in its next development steps?” (Amarok) . 87

7.7 Result for evaluation question “Will the new vision help increase

transparency in the project for users?” and “Will the new vision

help improve collaboration in the project for contributors?” (Amarok) 87

7.8 Result for evaluation question“Do you think the process of creating

the new vision can be used by other Free Software projects as well?”

(Amarok) . 88

7.9 Result for evaluation questions “Do you think the process of creat-

ing the new vision was transparent/collaborative?” (Amarok) . . . 88

7.10 Result for evaluation question “Do you think the new feature track-

ing form/template and roadmap are easy to use?” (Halo, Amarok) 89

7.11 Result for evaluation questions “Will the new feature tracking for-

m/template improve collaboration between contributors/contribu-

tors and users?” (Halo, Amarok) 89

7.12 Result for evaluation question “Will the new feature tracking for-

m/template and roadmap increase transparency?” (Halo, Amarok) 90

7.13 Result for evaluation question “Do you think other Free Software

projects might be interested in this too?” (Halo, Amarok) 90

7.14 Result for evaluation questions “Do you consider the weekly emails

from Bugzilla to the developer mailing list about release blocker-

s/the testing checklist/the public testing useful for improving the

QA situation?” (Halo, Amarok) 91

7.15 Changes in the openness of Halo’s release cycle 91

7.16 Changes in the openness of Amarok’s release cycle 92

A.1 Halo timeline . 97

A.2 Amarok 1 timeline . 98

A.3 Amarok 2 timeline . 99

xx List of Figures

List of Tables

3.1 Example table for SIPOC . 16

4.1 SIPOC for feature design in Halo 36

4.2 SIPOC for writing code in Halo 37

4.3 SIPOC for quality assurance in Halo 38

4.4 SIPOC for user engagement in Halo 39

4.5 SIPOC for contributor engagement in Halo 40

4.6 SIPOC for promotion in Halo . 41

4.7 SIPOC for writing code in Amarok 46

4.8 SIPOC for release management in Amarok 47

4.9 SIPOC for quality assurance in Amarok 48

4.10 SIPOC for user engagement and support in Amarok 50

4.11 SIPOC for team engagement and management in Amarok 51

4.12 SIPOC for promotion in Amarok 51

4.13 Comparison of some of the distinguishing features of the projects 54

4.14 Comparison of some of the tools used by the projects 54

5.1 Useful actions that can be executed with a commit 64

5.2 Feature request states and their meaning 68

5.3 Feature request priorities and their meaning 69

5.4 Feature request classification by scope and difficulty 69

5.5 Release milestones and their idealized meaning and intended audience 72

xxii List of Tables

List of Listings

2.1 Example of wiki text mark-up for a simple 2x3 table 13

2.2 Example for a query for everything in the category ”Person” that

has the property ”Affiliated with” set to ”ontoprise GmbH”. The

result will be returned as a table 14

C.1 Mark-up for the team dashboard table showing task, bug and fea-

ture request count for each team member 103

C.2 Template for the individual rows of the team dashboard table show-

ing task, bug and feature request count for each team member . . 104

C.3 Template for the individual rows of the team dashboard table show-

ing task, bug and feature request count for each team member with

links . 104

C.4 Parser function to remove the User namespace 104

C.5 Web service query for the team dashboard table 104

C.6 Web service query for the build status from Hudson 105

C.7 Query for the bug status chart of Halo 105

C.8 Web service query for number of open bugs for the current Halo

development version . 105

C.9 Web service query for open bugs for the current Halo release . . . 105

C.10 Web service query for closed bugs for the current Halo release . . 106

C.11 Query for features tracked in the wiki for Halo 106

C.12 Wiki mark-up of Amarok’s feature tracking template 107

C.13 Usage example of Amarok’s feature tracking template 107

C.14 Wiki mark-up of Halo’s feature tracking template 108

C.15 Wiki mark-up of Halo’s feature tracking form 109

xxiv List of Listings

List of URLs

http://fsf.org . 4

http://opensource.org . 4

http://debian.org . 4

http://httpd.apache.org . 4

http://android.com . 4

http://firefox.com . 4

http://mediawiki.org . 4

http://wikipedia.org . 4

http://kde.org . 5

http://gnome.org . 5

http://tiswww.case.edu/php/chet/bash/bashtop.html 5

http://xmind.net . 5

http://qt.nokia.com . 6

http://smwforum.ontoprise.com . 6

http://semantic-mediawiki.org . 6

http://ontoprise.com . 6

http://vulcan.com . 6

http://wiking.vulcan.com/up . 7

http://projecthalo.com . 8

http://amarok.kde.org . 9

http://magnatune.com . 9

http://deutsche-wurlitzer.de . 9

http://userbase.kde.org/Plasma . 10

http://fsf.org
http://opensource.org
http://debian.org
http://httpd.apache.org
http://android.com
http://firefox.com
http://mediawiki.org
http://wikipedia.org
http://kde.org
http://gnome.org
http://tiswww.case.edu/php/chet/bash/bashtop.html
http://xmind.net
http://qt.nokia.com
http://smwforum.ontoprise.com
http://semantic-mediawiki.org
http://ontoprise.com
http://vulcan.com
http://wiking.vulcan.com/up
http://projecthalo.com
http://amarok.kde.org
http://magnatune.com
http://deutsche-wurlitzer.de
http://userbase.kde.org/Plasma

xxvi List of URLs

http://last.fm . 10

http://pandora.com . 11

http://ampache.org . 11

http://akademy.kde.org . 11

http://ev.kde.org . 12

http://mediawiki.org/wiki/Extension:Semantic Maps 13

http://mediawiki.org/wiki/Extension:Semantic Forms 13

http://digikam.org . 14

http://k3b.org . 14

http://kernel.org/pub/linux/docs/lkml 16

http://mozilla.org/about/mission.html 20

http://mozilla.org . 20

http://fedoraproject.org/wiki/Overview 20

http://fedoraproject.org/wiki/Foundations 20

http://fedoraproject.org/wiki/Vision statement 20

http://en.opensuse.org/Portal:Strategy 21

http://co-ment.com . 21

http://wikimediafoundation.org/wiki/Mission 21

http://wikimediafoundation.org/wiki/Vision 21

http://fedoraproject.org/wiki/Releases/15/FeatureList 22

http://fedoraproject.org/wiki/Features/EmptyTemplate 22

https://wiki.ubuntu.com/UbuntuOne/Roadmap 22

http://harmony.apache.org/roadmap.html 22

http://subversion.apache.org/roadmap.html 23

http://live.gnome.org/Tracker/Roadmap 24

http://community.kde.org/Plasma/2011 24

http://launchpad.net . 24

http://blueprints.launchpad.net/zeitgeist 25

http://blueprints.launchpad.net/zeitgeist/+spec/performance-tracking 25

http://getsatisfaction.com . 27

http://last.fm
http://pandora.com
http://ampache.org
http://akademy.kde.org
http://ev.kde.org
http://mediawiki.org/wiki/Extension:Semantic_Maps
http://mediawiki.org/wiki/Extension:Semantic_Forms
http://digikam.org
http://k3b.org
http://kernel.org/pub/linux/docs/lkml
http://mozilla.org/about/mission.html
http://mozilla.org
http://fedoraproject.org/wiki/Overview
http://fedoraproject.org/wiki/Foundations
http://fedoraproject.org/wiki/Vision_statement
http://en.opensuse.org/Portal:Strategy
http://co-ment.com
http://wikimediafoundation.org/wiki/Mission
http://wikimediafoundation.org/wiki/Vision
http://fedoraproject.org/wiki/Releases/15/FeatureList
http://fedoraproject.org/wiki/Features/EmptyTemplate
https://wiki.ubuntu.com/UbuntuOne/Roadmap
http://harmony.apache.org/roadmap.html
http://subversion.apache.org/roadmap.html
http://live.gnome.org/Tracker/Roadmap
http://community.kde.org/Plasma/2011
http://launchpad.net
http://blueprints.launchpad.net/zeitgeist
http://blueprints.launchpad.net/zeitgeist/+spec/performance-tracking
http://getsatisfaction.com

List of URLs xxvii

http://input.mozilla.com . 28

http://www.dwheeler.com/sloccount 36

http://cloc.sourceforge.net . 36

http://dailywikibuilds.ontoprise.com:8080 37

http://smwforum.ontoprise.com/smwbugs 37

http://smwforum.ontoprise.com . 38

http://smwforum.ontoprise.com/smwboard 38

http://smwforum.ontoprise.com/smwforum/index.php/Development/Main

Page . 39

http://smwforum.ontoprise.com/smwforum/index.php/SemanticMinds 40

http://twitter.com . 40

http://identi.ca . 40

http://git.reviewboard.kde.org . 46

http://bugs.kde.org . 46

http://amarok.kde.org/wiki . 46

http://forum.kde.org . 49

http://facebook.com . 49

http://forum.kde.org/brainstorm.php 49

http://userbase.kde.org . 49

http://amarok.kde.org . 49

http://docs.google.com . 51

http://smwforum.ontoprise.com/smwforum/index.php/Development/Team

Dashboard . 113

http://smwforum.ontoprise.com/smwforum/index.php/Development/Release

Status . 113

http://smwforum.ontoprise.com/smwforum/index.php/Development/Commit

Checklist . 114

http://smwforum.ontoprise.com/smwforum/index.php/Form:Feature . 114

http://smwforum.ontoprise.com/smwforum/index.php/Testfoo 114

http://amarok.kde.org/wiki/VisionCreation 115

https://projects.kde.org/projects/extragear/multimedia/amarok/repository/

revisions/master/entry/HACKING/commitchecklist.txt 115

http://input.mozilla.com
http://www.dwheeler.com/sloccount
http://cloc.sourceforge.net
http://dailywikibuilds.ontoprise.com:8080
http://smwforum.ontoprise.com/smwbugs
http://smwforum.ontoprise.com
http://smwforum.ontoprise.com/smwboard
http://smwforum.ontoprise.com/smwforum/index.php/Development/Main_Page
http://smwforum.ontoprise.com/smwforum/index.php/Development/Main_Page
http://smwforum.ontoprise.com/smwforum/index.php/SemanticMinds
http://twitter.com
http://identi.ca
http://git.reviewboard.kde.org
http://bugs.kde.org
http://amarok.kde.org/wiki
http://forum.kde.org
http://facebook.com
http://forum.kde.org/brainstorm.php
http://userbase.kde.org
http://amarok.kde.org
http://docs.google.com
http://smwforum.ontoprise.com/smwforum/index.php/Development/Team_Dashboard
http://smwforum.ontoprise.com/smwforum/index.php/Development/Team_Dashboard
http://smwforum.ontoprise.com/smwforum/index.php/Development/Release_Status
http://smwforum.ontoprise.com/smwforum/index.php/Development/Release_Status
http://smwforum.ontoprise.com/smwforum/index.php/Development/Commit_Checklist
http://smwforum.ontoprise.com/smwforum/index.php/Development/Commit_Checklist
http://smwforum.ontoprise.com/smwforum/index.php/Form:Feature
http://smwforum.ontoprise.com/smwforum/index.php/Testfoo
http://amarok.kde.org/wiki/VisionCreation
https://projects.kde.org/projects/extragear/multimedia/amarok/repository/revisions/master/entry/HACKING/commitchecklist.txt
https://projects.kde.org/projects/extragear/multimedia/amarok/repository/revisions/master/entry/HACKING/commitchecklist.txt

xxviii List of URLs

http://amarok.kde.org/wiki/Template:Feature 115

http://amarok.kde.org/wiki/Proposals/Example 115

http://amarok.kde.org/wiki/Proposals 115

http://amarok.kde.org/wiki/Development/Testing 115

http://amarok.kde.org/wiki/Template:Feature
http://amarok.kde.org/wiki/Proposals/Example
http://amarok.kde.org/wiki/Proposals
http://amarok.kde.org/wiki/Development/Testing

List of Abbreviations

API application programming interface

CMMI Capability Maturity Model Integration

CVS Concurrent Versions System

FESCo Fedora Engineering Steering Committee

FSF Free Software Foundation

HTML Hypertext Markup Language

HTTP Hypertext Transfer Protocol

IRC Internet Relay Chat

MW MediaWiki

PCS Process Capability Score

PSS Process Success Score

QA quality assurance

RDF Resource Description Framework

REST Representational State Transfer

RSS Really Simple Syndication

SC Software Compilation

SCAMPI Standard CMMI Appraisal Method for Pro-

cess Improvement

SIPOC Suppliers, Inputs, Process, Outputs, Cus-

tomers

SMW Semantic MediaWiki

SOAP Simple Object Access Protocol

SPARQL SPARQL Protocol and RDF Query Language

SVN Apache Subversion

UAD Unifying Action Declaration

UI user interface

XML Extensible Markup Language

xxx Acronyms

“Everything that is really great and inspiring is created by the

individual who can labor in freedom.”

Albert Einstein

1
Introduction

Free Software

Amarok

music

KDE

community

Halo
semantic

web

knowledge
Media

Wiki

2 1. Introduction

Free Software projects are a curious phenomenon. Many of them function without

a clear leader and rely on people contributing to the project in their free time

without any monetary compensation. At the same time, Free Software is an

integral part of today’s technology world.

Free Software projects vary in many ways, such as size, contributors and commer-

cial interest. Despite these differences, many of them seem to face very similar

problems. Two things are crucial for the survival of a Free Software project: col-

laboration and transparency. Due to their often distributed nature, these projects

rely extensively on collaboration. Transparency is a requirement for good collab-

oration and project sustainability.

Amarok is an open source music player and one of the flagship applications de-

veloped by KDE, a large and mostly volunteer-driven Free Software project that,

among other things, develops a desktop environment and hundreds of its appli-

cations. Halo, on the other hand, is a set of extensions for Semantic MediaWiki

(SMW), developed in a mostly business-driven Free Software project. Halo and

Amarok have similarly-sized developer teams (KDE as a whole is considerably

larger). For both projects, it is important to strive for more transparency in

the development process to make contributing easier for both team members and

potential new contributors.

The goal of this thesis is to analyse and improve the development process of these

two Free Software projects. The improvements will be enacted using tools the

project members are already familiar with. These include but are not limited to

MediaWiki (MW) and SMW. In the end, deeper knowledge of the development

process behind middle-sized Free Software projects will be gained as well as tools

and methods for improving this process. The focus of the work will be on increas-

ing transparency and collaboration in both projects. Halo and Amarok have been

chosen because they represent two very different kinds of Free Software projects

in terms of commercial interest, target users, reasons for contributor involvement

and leadership.

The remainder of this thesis is divided into seven parts. Chapter 2 provides an

overview of the necessary fundamentals to understanding Free Software in general

and the projects that are the focus of this thesis in particular. In Chapter 3

related work is explored. Chapter 4 contains an in-depth analysis of the Halo and

Amarok projects and their development processes. The new development process

is introduced in Chapter 5 and its implementation is explained in Chapter 6. The

new process is then evaluated in Chapter 7. Chapter 8 provides conclusions and

an outlook for future work.

“The universe is full of magical things patiently waiting for our

wits to grow sharper.”

Eden Phillpotts

2
Fundamentals

This chapter gives an overview of areas that are fundamental to understanding the

following chapters of this thesis. It starts with an introduction to collaboration

and transparency and a general overview of what Free Software is and continues

with a characterisation of the projects that are the basis of this research.

2.1 Collaboration and transparency

One of Merriam-Webster’s definitions for collaboration is: the act of “working

jointly with others or together especially in an intellectual endeavor”. In Free

Software, this means working together on software. This collaboration can happen

in the same physical location or virtually. It can happen in real-time or not. It

can happen between members of the team and between members of the team and

non-members (e.g., users).

In this thesis, transparency describes the easy access to and visibility of informa-

tion. It is an essential ingredient of collaborative work. This transparency can

exist or not exist in a team as well as between a team and outsiders. For this

writing, transparency encompasses questions like “Who is working on task A?” or

“What is person B working on?” and “What needs to be done to finish task C?”.

4 2. Fundamentals

2.2 Free Software and Open Source

Free Software describes a philosophy of developing and distributing software. The

emphasis is on making the software freely available to both developers and users

and encouraging them to modify it for their needs and share it with others. In its

Free Software definition [Sta86] the Free Software Foundation (FSF)1 defines four

freedoms that a program must fulfil to be considered Free Software:

∙ The freedom to run the program, for any purpose.

∙ The freedom to study how the program works, and change it to make it do

what you wish.

∙ The freedom to redistribute copies so you can help your neighbor.

∙ The freedom to distribute copies of your modified versions to others.

The Open Source definition [Per98] of the Open Source Initiative2 as well as the

Debian3 Free Software Guidelines [Pro97] are the two other well regarded defini-

tions of when a program can be considered to be free4. The difference lies mostly

in whether one wants to emphasise the social or technical aspect of software being

free.

Free Software has become a major player in the software industry in recent years.

Some very successful programs include:

∙ Apache5, a Hypertext Transfer Protocol (HTTP) server, runs on more than

57% of active webservers and more than 66% of the servers hosting the one

million busiest websites [Cow10].

∙ Android6, Google’s mobile operating system, has climbed from a market

share of below 5% of all smart phones to nearly 20% in one year [Com10].

∙ Firefox 7, a web browser, has a market share of around 30% [Wik10].

∙ MediaWiki8, a wiki software, is the basis of thousands of websites, among

them Wikipedia9, one of the ten most visited websites [Ale10].

1http://fsf.org
2http://opensource.org
3http://debian.org
4From here on free will be considered as libre, not gratis.
5http://httpd.apache.org
6http://android.com
7http://firefox.com
8http://mediawiki.org
9http://wikipedia.org

http://fsf.org
http://opensource.org
http://debian.org
http://httpd.apache.org
http://android.com
http://firefox.com
http://mediawiki.org
http://wikipedia.org

2.2. Free Software and Open Source 5

Free Software projects are the entities in which one or more programs are devel-

oped. There are a lot of different ways a Free Software project can be set up.

The spectrum goes from projects that are run by companies entirely, over mixed

projects to projects entirely driven by a volunteer community (see Figure 2.1).

The reasons for being involved vary depending on the set-up of the project. In

company-driven projects the motivation tends to be more on the extrinsic side

(e.g., money and social pressure) while in volunteer-driven projects the motiva-

tion tends to be more on the intrinsic side (e.g., fun, personal development and

friendship). These differences in motivation often also lead to a different work

and communication style. Almost all of the volunteer-driven projects tend to be

spread out over different countries, time zones and cultures. This brings a number

of challenges regarding team building and work coordination. Some of the mea-

sures taken to alleviate this can likely also help companies deal better in a world

where working from home and global teams become more and more common.

volunteer

Amarok

mixed

Halo

paid

Figure 2.1: Spectrum of driving forces of a Free Software project (and approximate
position of Amarok and Halo)

Another way Free Software projects can be characterised is by the perceived mean

distance between the individual layers of its community (see Figure 2.2). The

community consists of people who are closer to or farther away from the core

team of the project. The bigger the perceived distance between each community

layer is, the harder it is to create a feeling of belonging in the non-core team. This

feeling of belonging, however, is what keeps contributors involved in a project

[Bac09].

very close

Amarok Halo

very far

Figure 2.2: Perceived mean distance between community layers of a Free Software
project (and approximate position of Amarok and Halo)

Releases are the heartbeat of a Free Software project. They are the source code

snapshots that the authors deem suitable for public consumption – be it for testing

or production use. Some projects develop their product in the open with everyone

having access to the version control system history (KDE10, GNOME11). Other

projects only publish releases (Bash12, XMind13). Mixed models in which the ver-

10http://kde.org
11http://gnome.org
12http://tiswww.case.edu/php/chet/bash/bashtop.html
13http://xmind.net

http://kde.org
http://gnome.org
http://tiswww.case.edu/php/chet/bash/bashtop.html
http://xmind.net

6 2. Fundamentals

sion control history is published with a delay (Qt14, Android) also exist. Releases

are often labelled as major and minor releases based on whether they add new

features or only bug fixes compared to the previous release.

2.3 Halo

Figure 2.3: SMWForum running Halo 1.5.1

Halo15 is the name for a suite of extensions to Semantic MediaWiki (SMW)16.

They provide enhancements to the semantic annotations of SMW as well as other

useful features that enhance MediaWiki (MW) and SMW with a focus on use in

a business environment. They are mainly being developed by ontoprise17. The

sponsor of the development activities is Vulcan Inc18.

In addition to the free of charge Halo extensions ontoprise also offers a commercial

version called SMW+. It comes with an installer and virtual machine image for

easier installation and updates.

Halo includes the following extensions and tools:

∙ Access Control List is used to protect single pages, articles in categories and

namespaces as well as semantic values. It can be used to restrict access to

parts of the wiki to specific people or groups.

∙ Application Programming is an extension bundle that provides various func-

tions useful for building applications in the wiki.

14http://qt.nokia.com
15http://smwforum.ontoprise.com
16http://semantic-mediawiki.org
17http://ontoprise.com
18http://vulcan.com

http://qt.nokia.com
http://smwforum.ontoprise.com
http://semantic-mediawiki.org
http://ontoprise.com
http://vulcan.com

2.3. Halo 7

∙ Collaboration adds commenting on and rating of articles to the wiki.

∙ Data Import allows integration of external data either via import into wiki

pages or via queries to Simple Object Access Protocol (SOAP) and Repre-

sentational State Transfer (REST)ful web services.

∙ Deployment Framework provides easy administration of a wiki installation

including installing and updating extensions.

∙ Enhanced Retrieval provides advanced searching capabilities including fuzzy

search and spell checking.

∙ Halo supports knowledge authoring as well as browsing and querying of

semantic data.

∙ Linked Data is used for importing data from the Web of Data and offering

data export via a SPARQL Protocol and RDF Query Language (SPARQL)

endpoint and Resource Description Framework (RDF).

∙ MS Excel Bridge allows the import of query results into MS Excel.

∙ MS Project Connector allows the import and export of data fromMS Project.

∙ Rich Media enhances uploading and handling of media files and allows their

semantic annotations.

∙ Rule Knowledge provides a graphical editor for logical rules.

∙ Scriptmanager provides shared libraries for the other extensions.

∙ Semantic Gardening is a bundle of tools for maintaining the knowledge base.

∙ Semantic Notifications allows monitoring of changes of the semantic data.

∙ Semantic Treeview provides a treeview of wiki elements like categories, pages

or semantic data.

∙ Triple Store Connector connects the triple store and wiki.

∙ Ultrapedia is a support extension for the Ultrapedia19 project.

∙ User Manual provides context-sensitive access to parts of the Halo documen-

tation.

∙ WikiTags provides semantic data from the wiki when creating documents in

MS Office.

∙ WYSIWYG provides a WhatYouSeeIsWhatYouGet Editor including seman-

tic annotations and editing of templates and queries.

19http://wiking.vulcan.com/up

http://wiking.vulcan.com/up

8 2. Fundamentals

2.3.1 History

Halo was started as part of Project Halo20. Project Halo started in 2003 with the

vision of creating the digital Aristotle, a system knowledgeable in a wide range of

topics and able to teach them. It was initiated by Vulcan Inc. Since then it has

seen a number of public releases making it more suitable for collaborative work

that goes further than what MW alone can provide.

Figure 2.4: Number of final Halo releases in 2009 and 2010

Figure 2.4 shows the number of Halo releases per year and Figure A.1 shows a

timeline of releases.

2.3.2 Goals

Halo aims to provide a collaborative environment where teams can share knowl-

edge. It enriches the unstructured nature of a wiki with semantic annotations

(together with SMW) and provides tools to use these annotations in order to

make working with the knowledge stored in a wiki easier. It tries to make the

semantic web usable for people who are not necessarily experienced with wikis and

ontologies. With the ontologies which are provided by default in the commercial

version, it is mainly targeting companies that need a platform for collaboration

and project management.

2.3.3 Culture

The project is to a large extent driven by the requirements defined by Vulcan Inc.

There is a will to integrate other contributions from the community around it but

the reality is that that is not happening a lot yet. The atmosphere is very much

influenced by the fact that it is a company-driven project.

20http://projecthalo.com

http://projecthalo.com

2.4. Amarok 9

2.3.4 Structure

The team is divided into a group of developers, a technical leader, a project man-

ager and documentation writers. Requirements are mostly coming from Vulcan

Inc. and then distributed in the team. Each developer has a set of extensions

they are responsible for throughout the release cycle.

2.4 Amarok

Figure 2.5: Amarok 2.3.2

Amarok21 is a Free Software music player developed by members of the KDE

community. It is set apart from its competition mainly by the deep integration

of internet services and how it helps the user manage and play a large music

collection.

Amarok development is entirely volunteer-driven, although one developer has been

paid part-time to work on Amarok by Magnatune22, an artist and customer-

friendly music label, and another developer hired by Wurlitzer23, a well-known

jukebox company, to develop a customized Amarok version for a jukebox. The

project relies on donations from the user community to pay for infrastructure and

event expenses.

Amarok is part of KDE Extragear24, making it partly independent from the KDE

Software Compilation (SC)25. It does not follow its release schedule for example.

It does, however, use a lot of KDE’s infrastructure, including bug tracker, version

21http://amarok.kde.org
22http://magnatune.com
23http://deutsche-wurlitzer.de
24A module for programs that are partly independent from the main KDE programs
25KDE’s compilation of core programs that is currently being released approximately every 6

months

http://amarok.kde.org
http://magnatune.com
http://deutsche-wurlitzer.de

10 2. Fundamentals

control system, translation infrastructure, mailing lists and forum. It does not

share KDE’s Internet Relay Chat (IRC) channels and website. Wikis26 and legal

foundation27 are partly shared.

2.4.1 History

Mark Kretschmann says that he “started Amarok in 2002 because XMMS had

usability problems”. Since then it has seen tremendous growth and adoption

among Linux users. It has repeatedly won prizes in the Linux community. Among

them are LinuxQuestions.org Members Choice Awards for 2005, 2006, 2007, 2008

and 2009 [Gar06, Gar07, Gar08, Gar09, Gar10] and Linux Journal Readers’ Choice

Awards in 2008, 2009 and 2010 [Gra08, Gra09b, Gra10].

With KDE switching to Qt 428 for its software, radical changes were made to the

whole SC. This brought a lot of opportunities for improvements and innovation

like the whole Plasma29 stack as well as the social semantic desktop. Amarok

went through a similar transition from Amarok 1 to Amarok 2 during that time.

It included a rewrite of large parts of the underlying code-base as well as invasive

changes to the user interface (UI). The changes were made to make the program

more maintainable and to refocus on the core mission of the project. Both KDE

and Amarok endured public backlash due to the adaptation required from users

but are regaining popularity and are thriving after the needed clean-up and refo-

cusing [Sei10].

Amarok was started when KDE was using Concurrent Versions System (CVS) as

the version control system, then migrated to Apache Subversion (SVN) with the

rest of KDE’s software in 2005 and was one of the first KDE projects to move to

git30 in 2009. Figure A.2 and Figure A.3 show a timeline with important mile-

stones in Amarok’s history. Since the beginning of the project, six new versions

on average have been released per year (Figure 2.6).

2.4.2 Goals

The goal for Amarok is to develop a program that can help its users to rediscover

their music – leading to its tagline and motto “Rediscover Your Music”. These

days users tend to have many thousands of music files scattered on different hard

drives. On top of that local music files seem to become less and less important

with the presence of always available web radios and web services like Last.fm31,

26The Amarok project uses one of KDE’s wikis, UserBase, for its end-user documentation.
27KDE e.V. and the Software Freedom Conservancy on behalf of Amarok share project ex-

penses.
28A cross-platform development toolkit for C++
29http://userbase.kde.org/Plasma
30Distributed version control system originally developed for the Linux kernel
31http://last.fm

http://userbase.kde.org/Plasma
http://last.fm

2.4. Amarok 11

Figure 2.6: Number of final Amarok releases between 2003 and 2010

Pandora32 and Co [Fra10] or the user might even set up their own music server

with Ampache33 or similar programs. It becomes increasingly important to offer

help with finding the music one is looking for easily as well as rediscovering music

that is getting lost in the large amount of available music. The other way that

Amarok helps to rediscover music is through offering useful related information

to a given song and making it easily accessible in a uniform way. This includes

album art, lyrics as well as songs by the same or related artists. All of this is

shown in applets in the UI removing the need to search for this information on

different websites in a web browser for example.

2.4.3 Culture

The project is friendly and relies heavily on contributors working together to

continuously make new releases.

The day-to-day operations and communication take place mainly on IRC and mail-

ing lists. While no high-impact decisions are solely taken on IRC, because it is

important that people not online at that point have a say in the decision, IRC

is extremely important for the management of the project as well as creating a

strong bond in the team. Some team members regularly meet at trade shows, de-

velopment sprints and events such as KDE’s annual conference Akademy34. The

importance of these meetings for the team can not be emphasized highly enough.

They help build friendships and motivation and turn drive-by contributors35 into

long-time community members. “I came for the code and stayed for the commu-

nity.” and “I found life-long friends here.” are two commonly heard sentences.

32http://pandora.com
33http://ampache.org
34http://akademy.kde.org
35Contributors who only make a small number of contributions over a short time period to a

project

http://pandora.com
http://ampache.org
http://akademy.kde.org

12 2. Fundamentals

2.4.4 Structure

Amarok has a flat team structure. There are only a few official titles: author, com-

munity manager, release manager and member of the Amarok Committee. It is a

meritocracy like many Free Software projects, meaning titles and responsibilities

are given based on demonstrated merit. Decisions are based on reaching consen-

sus, and as in the rest of KDE, made pragmatically. Everyone can voice their

opinion. Higher priority is given to those who contribute more than just opinion,

i.e., “who does the work decides”36. It is comparatively easy to get involved and

with enough dedication it is possible to get into the core team very quickly.

Contributions are recognised by adding the person’s name to the about dialog of

the program. It is split into several sections - Authors, Contributors and Donors.

Contributors get awarded author status for long-time commitment to the project

after recommendation by one of the existing authors and approval by the other

authors. The second section contains names of people who have made non-minor

contributions at some point in the lifetime of the project. Names are added based

on recommendation by anyone in the community. The last section contains names

of donors that get added for donating during Roktober, the annual fundraiser of

the project.

The Amarok Committee is a body of five long-time contributors who oversee the

financial operations of the project like approving travel expense reimbursements.

It does not make decisions related to the development of the software just like

KDE e.V.’s37 board, which it is modelled after.

Day-to-day operations are supported by Rokymotion, the non-developer part of

the team. Promotion, bug triage, end-user support and infrastructure mainte-

nance are among their tasks but their main focus is on promotion.

2.5 MediaWiki

MW is a wiki software developed by the MW community and its supporting

foundation. It is written in PHP and allows the user to easily collaborate on

the web without needing to know Hypertext Markup Language (HTML). Instead,

it uses a simple mark-up language. The low barrier to entry is one of the key

factors to the success of Wikipedia, one of the most visited websites and biggest

deployment of MW.

The success of the MW community is also enabled by making it easy to customize

MW with extensions. This allows the growth of an eco-system around MW with-

out potentially having to compromise the core of the project.

36One of KDE’s tenets
37http://ev.kde.org

http://ev.kde.org

2.6. Semantic MediaWiki 13

1 {|

2 |-

3 ! Header 1

4 ! Header 2

5 |-

6 | Cell 1

7 | Cell 2

8 |-

9 | Cell 3

10 | cell 4

11 |}

Listing 2.1: Example of wiki text mark-up for a simple 2x3 table

For the implementation in Chapter 6, two parts of the MW mark-up are impor-

tant: tables and templates. An example of a simple table is shown in Listing 2.1.

Templates are text snippets that are needed repeatedly across a wiki. Each of

them has a page in the Template namespace. They are used by adding {{Tem-

plateName}} in the wiki mark-up. Optionally they can be called with arguments

using {{TemplateName|Argument1|Argument2}}. In the actual template these

arguments can then be used by using {{{1}}}, {{{2}}} and so on.

2.6 Semantic MediaWiki

SMW is an extension to MW which allows semantic annotations of the wiki text

as well as work with the semantic knowledge then contained in the wiki. This

allows easy searching, aggregating, querying and more of the data in the wiki.

SMW was started at the University of Karlsruhe by Markus Krötzsch and Denny

Vrandecic. They released the first version in 2005. Since then it has grown, seen

over 20 releases and gained a significant contributor base, indicating a healthy

project. During that time a number of extensions, including Halo, Semantic

Maps38 and Semantic Forms39 have been build around SMW by volunteers and

companies.

Most of the community activity happens on the user and developer mailing lists

but there is also an active IRC channel.

For the implementation in Chapter 6, two things are important: queries and web

services. The semantic data in the wiki can be queried and the result displayed in

different ways. A simple example can be seen in Listing 2.2. Web services are used

to display and use data from external sources in the wiki. External sources can

be Really Simple Syndication (RSS) feeds, Extensible Markup Language (XML)

files, websites offering a RESTful application programming interface (API) and

more.

38http://mediawiki.org/wiki/Extension:Semantic Maps
39http://mediawiki.org/wiki/Extension:Semantic Forms

http://mediawiki.org/wiki/Extension:Semantic_Maps
http://mediawiki.org/wiki/Extension:Semantic_Forms

14 2. Fundamentals

1 {{#ask: [[Category:Person]]

2 [[Affiliated with:: ontoprise GmbH]]

3 | format=table

4 | headers=hide

5 | link=none

6 | order=ascending

7 |}}

Listing 2.2: Example for a query for everything in the category ”Person” that has the
property ”Affiliated with” set to ”ontoprise GmbH”. The result will be
returned as a table

2.7 KDE

KDE is a Free Software project that started out with the goal of creating a user

friendly desktop environment for Linux. Matthias Ettrich started it in 1996 using

C++ and Qt. Today it is one of the largest Free Software communities, creating

a desktop environment and applications for it. Recently there have also been

efforts to reach out to other form factors like netbooks and mobile devices. KDE’s

software can be divided into KDE SC, which is the main desktop product plus

some applications, and Extragear. Extragear is a place for programs that want to

keep a certain degree of independence from the main module. It includes some of

the community’s flagship applications like Amarok, digiKam40 and K3b41.

The project is almost entirely run by volunteers but there are companies support-

ing it and employing a large number of contributors. These include for example

Nokia, Novell and Google. KDE is supported by the KDE e.V. in legal and

administrative matters. The KDE e.V., however, explicitly does not influence

development.

Communication and coordination largely take place on IRC and mailing lists, as

well as at the annual conference Akademy and other smaller local events.

40http://digikam.org
41http://k3b.org

http://digikam.org
http://k3b.org

“Alone we can do so little; together we can do so much.”

Helen Keller

3
Related Work

In this chapter, relevant related work is explored. It is input for the design of the

new development process in Chapter 5.

The reviewed literature seemed to have a very strong focus on the developers in

Free Software projects and often did not recognise the importance of non-coding

contributions. Reasons for this might be the difficulty in obtaining data about

non-developer contributors or the view that writing code is the most important

work in such a project and should therefore be focused on. This thesis attempts

a more comprehensive view of the contributor team.

3.1 Mapping of development processes

Capability Maturity Model Integration (CMMI) is a model for process improve-

ment. It comes in three different versions, one for development, one for services

and one for acquisition. In its current version 1.3 it lists 22 process areas in the

development version [CMM10]. Some of them will be used to guide the analysis

in Chapter 4: Casual Analysis and Resolution, Decision Analysis and Resolution,

Integrated Project Management, Measurement and Analysis, Organisational In-

novation and Deployment, Organizational Process Definition, Organizational Pro-

cess Focus, Project Monitoring and Control, Project Planning, Process and Prod-

uct Quality Assurance, Quantitative Project Management, Requirements Devel-

opment, Requirements Management, Technical Solution. CMMI is accompanied

by an appraisal process named Standard CMMI Appraisal Method for Process

16 3. Related Work

Improvement (SCAMPI) [SCA06]. Organisations can be evaluated and assigned

a maturity level from 2 to 5 based on the evaluation of their processes. It demands

the use of interviews and document review as evidence for the evaluation. The

analysis of the development processes in Chapter 4 will be following the suggested

interview guidelines of SCAMPI. They include not interviewing two people in the

same reporting chain together, preparing questions to guide the interview and

communicating the interview schedule in advance.

Six Sigma is a business management strategy and associated tools. While it has

received criticism for focusing too much on incremental improvements and not

encouraging blue-sky ideas among other things [Hin07, Mor06], it does propose

one tool that is useful for this thesis: Suppliers, Inputs, Process, Outputs, Cus-

tomers (SIPOC). SIPOC provides a guideline for gathering data about a process

(see Table 3.1). It will be used in Chapter 4 to give an overview of the most

important processes. CMMI also provides a criterion for a defined process. It

has to state purpose, inputs, entry criteria, activities, roles, measures, verification

steps, outputs and exit criteria [CMM10]. For reasons of simplicity and scope we

will use SIPOC.

Suppliers Inputs Process Output Customers

users, man-
agement

requirements writing soft-
ware

code users

...

Table 3.1: Example table for SIPOC

3.2 Communication and coordination in distributed teams

Yamauchi et al. express a fundamentally important statement: “Open-source

programmers are biased towards action rather than coordination” [YYSI00]. They

tend to try out ideas without necessarily getting input from other contributors first.

They reason, ’After all it might not work out,’ or it is a controversial feature or

change, in which case discussion is easier when there is code to look at and judge,

among other motivations. The Linux kernel mailing list rules, for example, even

explicitly state: “A line of code is worth a thousand words. If you think of a

new feature, implement it first, then post to the list for comments.1” While this

is extreme and a lot of other Free Software projects avoid this mentality at all

costs it is a constant struggle to balance this bias towards action and the need for

coordination between team members.

Wikis are used a lot in Free Software teams to coordinate work. Some of them are

more successful than others. Based on a case study of three wikis by Wagner and

Majchrazak [WM07], Choate identified three important factors for the successful

1http://kernel.org/pub/linux/docs/lkml

http://kernel.org/pub/linux/docs/lkml

3.2. Communication and coordination in distributed teams 17

use of a wiki as a collaborative tool [Cho07]: alignment of goals, a culture of

collaboration and community custodianship.

Espinosa and Carmel identified components that factor into the cost of time-

separated teamwork [EC03]. The first factor is of course the cost required to

execute a given task. In time-separated teams they add to that the communica-

tion overhead that is required, the delay that is happening because one person

is waiting on another, clarification, meaning the additional communication and

delay because of misunderstandings and rework, the additional production cost

because of misunderstandings. They also say that some of these can be helped by

better using the time when synchronous communication can happen, moving to

more asynchronous communication and using tools that support it and educating

team members about the implications of working with others over a time-distance.

The latter can include making it easy to see what time it currently is at the other

team member’s location for example.

Espinosa et al. investigated team knowledge in geographically distributed teams

in comparison with collocated teams [ESKH07]. They found that“task awareness2

and presence awareness3 help team coordination in software projects”. They go

on and say that while task awareness is important in collocated teams it is even

more important in geographically distributed teams because it is harder to find

out who has done or not done a particular task. Many projects mitigate a part of

this through sophisticated collaboration tools. According to their findings, task

awareness is more important for a collocated team and knowledge of the team4

is more important for distributed teams. This might be because the collocated

team already has the knowledge about the team and is more focused on the status

of tasks. Task and presence awareness are part of what Hinds and Bailey call a

“shared context” [HB03]. They cite a lack of shared context as one reason for

conflicts in distributed teams. They propose a number of possible measures to

prevent conflicts caused by distance between team members: i) regular face-to-

face meetings to increase shared context, ii) purposefully conveying contextual

information like schedules either manually or automatically iii) creating similar

contexts at different locations5, iv) adapting to the tools that are available over

time and v) better adapting the tools that are available to the team’s needs.

Holck and Jørgensen stress the importance of continuous integration in distributed

development teams, meaning new features and bug fixes get into the source code

repository constantly and tested quickly to reduce the time between the occurrence

of a problem and someone noticing it [HJ07]. They also point out that both

projects they reviewed (Mozilla and Apache) have guidelines which state that

working on new features or bug fixes should be announced to avoid duplication

of work and conflicting changes as well as work on changes that the community

2The knowledge of what is going on with an area of a task that is of concern for a team
member

3The knowledge of the location and status of a team member
4e.g., Who is who? Who is an expert on a given topic? Who is responsible for something?
5This could include things like office policies, work environment or tools.

18 3. Related Work

does not consider improvements for the program. This happens, for example, in

Bugzilla tickets. To facilitate this further both projects have a notion of code-

ownership to make it clear who is ultimately in charge of a given part of the

code-base. Mozilla has an especially high focus on peer review, only allowing

changes into the repository after at least one review and some changes only after

super-review where the change’s impact on the overall system is examined. A

stabilization phase where new features are not allowed and development focuses

on bug fixing only exists in both cases. In their conclusion Holck and Jørgensen

suggest that continuous integration replaces many of the traditional engineering

practices like plans and design documents to some degree.

3.3 Collaboratively working on a vision

There are various ideas of what constitutes the vision or mission of an organi-

sation. Raynor, for example, defines a mission as “a concise statement of the

customers and core competencies of the organization; in other words, the arena of

competition for the organization and those characteristics of the profession that

will allow it to perform successfully in that arena” and a vision as “a statement

of the desired future state of the organization within the arena of competition

defined in the mission” [Ray98]. He also created a framework that shows what

influences and what is influenced by a vision and mission (Figure 3.1). It helps to

structure and focus the discussions during the process of developing or refining a

vision statement.

Figure 3.1: Raynor’s mission framework [Ray98]

A vision as well as a mission statement are supposed to help focus on what is

really important to a group of people. Without them it is easy for a group to lose

sight of long-term goals. Short term actions might even damage long-term success

if the team is not aware of where they are heading.

3.3. Collaboratively working on a vision 19

Levin sees the vision as an elaborate story of the future in contrast to conventional

vision statements that are shorter and less elaborate [Lev00]. He claims that to

really have an impact a short vision statement is not enough. It needs to be filled

with a story people can relate to. To create this story he proposes four steps and

lists a set of questions for each of them to facilitate them: i) becoming informed,

meaning getting to know the organisation and its strengths and weaknesses as

well as hopes and fears for the future, ii) visiting the future and recording the

experience, meaning exploring what the favourable future of the organisation could

look like, iii) creating the story, meaning the act of taking the information from

the previous steps and writing them into a captivating story and iv) deploying the

vision, meaning the dissemination of the vision among all stakeholders.

Lipton identified five reasons why a vision is important for an organisation or

business [Lip96]:

1. A vision enhances a wide range of performance measures. (Studies showed

that companies with a vision are performing better financially.)

2. A vision promotes change. (Lipton sees a vision as a vehicle for needed

changes in an organisation.)

3. A vision provides the basis for a strategic plan.

4. A vision motivates individuals and facilitates the recruitment of talent.

5. A vision helps keep decision making in context. (Lipton stresses the necessity

of an organisation knowing what it is doing and what it is not doing.)

Tarnow point out the power a vision statement can have when constructed as a

Unifying Action Declaration (UAD) [Tar97]. When it is written as one it can lead

to a concept called social categorization, that tells individuals who is included in

or excluded from a group. A UAD according to him needs to suggests an action,

identify this action only vaguely and include a social categorisation, which fits

well with a mission statement.

Lipton lists three ingredients for a successful vision [Lip96]:

1. the mission or purpose of the organisation or business – the answer to the

question why the organisation or business exists. What differentiates it from

others in its field?

2. the strategy to achieve the mission

3. other elements of the culture of the organisation that seem necessary

Reasons why a vision fails, according to Lipton, are:

1. failure of management to live up to it and acting in disagreement with it

20 3. Related Work

2. irrelevance for those who are affected by it

3. expecting it to solve all problems

4. too narrow scope or focus on the past instead of the future

5. the envisioned future is not grounded in reality

6. being too abstract or too concrete

7. lack of a creative process during its writing

8. poor management of participation during its writing

9. complacency – not realizing that it does take effort to make it reality

Based on this, all reviewed literature seems to agree that the key step during

the process of creating a vision statement is to involve all stakeholders or a good

representation of each group of them early in the process and have them participate

in the creation of what is to guide them for the foreseeable future.

There are a few great examples of how Free Software projects create and communi-

cate their mission or vision. Mozilla, the creators of Firefox, define their mission

as“to promote openness, innovation and opportunity on the web”6. However, they

communicate it slightly differently on the main page of their website7: “We Believe

in an Open Web and we’re dedicated to keeping it free, open and accessible to

all.” and then link to their mission statement and manifesto. The reason for this

is likely that this second version is more captivating and encourages the reader to

read more about Mozilla’s work. Fedora’s mission statement8 says: “The Fedora

Project’s mission is to lead the advancement of free and open source software and

content as a collaborative community.” The noteworthy part about this is that

it does not mention Fedora’s users. It focuses on driving innovation and this is

exactly what Fedora does. This focus on innovation sometimes hurts casual users

because of bugs and other problems using bleeding-edge software brings with it

but at the same time it is very attractive for users who always want to try out the

latest releases and innovations on the Linux desktop. In addition Fedora has four

“Foundations”9 (Freedom, Friends, Features, First), that are the core values of the

project, and a recently created vision statement (“The Fedora Project creates a

world where free culture is welcoming and widespread, collaboration is common-

place, and people control their content and devices.”10). According to a Fedora

board member the vision statement was driven by the board who gathered input

from the community via blogs, mailing lists and social networks. openSUSE in

contrast to Fedora’s mission statement is working on a mission statement right now

6http://mozilla.org/about/mission.html
7http://mozilla.org
8http://fedoraproject.org/wiki/Overview
9http://fedoraproject.org/wiki/Foundations

10http://fedoraproject.org/wiki/Vision statement

http://mozilla.org/about/mission.html
http://mozilla.org
http://fedoraproject.org/wiki/Overview
http://fedoraproject.org/wiki/Foundations
http://fedoraproject.org/wiki/Vision_statement

3.3. Collaboratively working on a vision 21

that will likely read: “The openSUSE project is a worldwide effort that promotes

the use of Linux everywhere. The openSUSE community develops and maintains

a packaging and distribution infrastructure which provides the foundation for the

world’s most flexible and powerful Linux distribution. Our community works to-

gether in an open, transparent and friendly manner as part of the global Free

and Open Source Software community.” In the first sentence it expresses a focus

that is much more towards a very large userbase, something that is evidently not

Fedora’s main goal. The more elaborate strategy document for openSUSE makes

another very important point at the start: “The following document is a statement

describing the openSUSE users, community, products and goals. The document is

for internal use and guides communication and decision making within the commu-

nity. It does not aim to limit anyone within the community to work on what they

want!” They do not want the mission to be used to tell someone that they can

not work on something they want to do. It is a fine line between trying to make a

team of volunteers work towards the same goal and driving them away by telling

them they can not work on something they are passionate about. The mission

statement was created together with a strategy document with the whole commu-

nity after a previous attempt at creating such a document11 in a smaller group and

then publishing it for comments by the wider community had failed [Poo10]. An

openSUSE contributor about the reason for the failure of the first attempt: “The

first attempt went too deep, technical and corporate to get community buy-in –

most people simply didn’t see themselves in it.” For writing the new document a

collaborative platform called co-ment12 was used. Everyone was able to give input

and comment on the existing text. Comments were taken into consideration and

the text changed accordingly where needed. In the end six iterations were done

this way. Currently the text is under review by the board and will likely be voted

on soon. The mission of the Wikimedia Foundation is “to empower and engage

people around the world to collect and develop educational content under a free

license or in the public domain, and to disseminate it effectively and globally.”13

In addition the Wikimedia Foundation also has a vision statement: “Imagine a

world in which every single human being can freely share in the sum of all knowl-

edge. That’s our commitment.”14 A draft for both was written by the board of

the foundation and then sent to the foundation mailing list for comments, edits

and following that a vote for approval [Moe06]. There seems to have been some

unhappiness with the process but overall it worked out. For both the mission and

vision the foundation offers a separate wiki page for proposing changes that will

be reviewed at least annually. This offers an easy way to propose changes in case

the mission or vision statement no longer reflects what the community wants the

foundation to be and do.

11http://en.opensuse.org/Portal:Strategy
12http://co-ment.com
13http://wikimediafoundation.org/wiki/Mission
14http://wikimediafoundation.org/wiki/Vision

http://en.opensuse.org/Portal:Strategy
http://co-ment.com
http://wikimediafoundation.org/wiki/Mission
http://wikimediafoundation.org/wiki/Vision

22 3. Related Work

Despite compelling reasons for having a vision or mission statement many compa-

nies or organisations do not. David identified a fear of the controversies that might

arise during the development of it [Dav89]. The act of formulating it might reveal

profound differences in the understanding of what the company or organisation

is and where it should go in the future. These differences should be discussed as

they might otherwise influence other decisions negatively. The other reason he

mentions is that management is too focused on administrative and tactical tasks

and does not pay enough attention to the clarification of the strategy behind them.

Ireland and Hirc add a few more possible reasons for failure to create a mission

statement [IH92]. The most relevant ones for this thesis are: i) the number of

stakeholders that would have to be involved ii) the work it would require, iii) be-

ing comfortable with the status quo and iv) fear that the mission statement might

provide important information to competitors.

3.4 Collaboratively creating a roadmap

Many projects use wikis for their roadmaps. They seem to focus on features in

them. A few of these roadmaps have been selected for closer examination here.

In its feature overview for Fedora 15, the Fedora community gives the name of

the feature, a short summary, an indication of how much of a feature is done

and when the status was last updated (Figure 3.215). The table is maintained

in Fedora’s project wiki and features are added after approval by the Fedora

Engineering Steering Committee (FESCo). The individual features link to a wiki

page with more details (Figure 3.316). Features that have not yet been approved

for a release are also collected in the wiki and added to the FeaturePageIncomplete

category for future consideration. Once the specification is complete it is marked

as ready for review by the FeatureWrangler17 by moving it to another category

named FeatureReadyForWrangler. After his review for completeness he hands

it over to FESCo for consideration for the next release by changing its category

to FeatureReadyForFesco. FESCo votes on the features for inclusion in the next

release and moves the approved ones to the category FeatureAcceptedFX [Fed].

The roadmap for UbuntuOne18 is a wiki page with a list of high-level items. It

gives only a short explanation for the features and does not link to any further

information sources. On top of that it is outdated and lists features for a release

that was done months ago. There is no indication of the progress on each of the

planned features.

Apache Harmony has a high-level road map19 that lists major milestones until

2008. Completed tasks have been struck through and prepended with DONE.

15http://fedoraproject.org/wiki/Releases/15/FeatureList
16http://fedoraproject.org/wiki/Features/EmptyTemplate
17Person appointed by FESCo to triage feature requests.
18https://wiki.ubuntu.com/UbuntuOne/Roadmap
19http://harmony.apache.org/roadmap.html

http://fedoraproject.org/wiki/Releases/15/FeatureList
http://fedoraproject.org/wiki/Features/EmptyTemplate
https://wiki.ubuntu.com/UbuntuOne/Roadmap
http://harmony.apache.org/roadmap.html

3.4. Collaboratively creating a roadmap 23

Figure 3.2: Layout of the roadmap for Fedora 15

Figure 3.3: Layout of the wiki template for new feature requests for Fedora

Apache Subversion (SVN) takes a different approach for their roadmap. They first

show a table of the next planned releases, the most important deliverables with

links to bug tracker entries and the quarter they are scheduled for. Then they

offer a table of their most-wanted features including their dependencies, links to

bug entries and the release they are targeted for. It can be seen in Figure 3.420.

Last they offer a more in-depth list of the features planned for the next major

release. It contains a red, yellow, orange or green circle indicating the status (not

started, in progress, explored and finished/deferred respectively), the name of the

task, its status in words and notes like bug numbers. Figure 3.5 shows its layout.

20http://subversion.apache.org/roadmap.html

http://subversion.apache.org/roadmap.html

24 3. Related Work

Figure 3.4: Layout of table showing most wanted features for SVN

Figure 3.5: Layout of roadmap for SVN

Tracker’s roadmap wiki page21 first lists a number of issues and plans for a future

release marked 0.x, likely indicating that they want to work on it for one of the

not-too-far in the future releases but do not know which one of them yet. Most of

the items do not have a link to further information. Below this list is the list for

the release currently being worked on. Some items have links to Bugzilla entries

or git branches. Completed items are marked with [DONE] or similar. Lists for

past releases can be found below that.

Plasma’s roadmap wiki page22 is more a brainstorming page for the next two

releases. It divides ideas and todos sorted first by release and then the form factor

the idea concerns (e.g., Plasma Desktop, Plasma Mobile). Each item is very short

and for someone, who is not a member of the team, it is likely not clear what

many of them mean.

Except for Fedora, in most of these cases it is not well communicated how a user

or potential contributor can influence these roadmaps, how they can express that

they think something should have priority for the next release or how they can

help with making some of these proposals reality. Neary proposes to add and

clearly mark items to a project’s roadmap that are not going to be done by the

core team to give direction to new contributors [Nea11].

Launchpad23 is a development platform that was originally started for the Ubuntu

project and now hosts nearly 22 000 projects. It provides a lot of the infrastructure

a Free Software team needs including bug tracking, version control for source code,

translations, an area for questions and blueprints, which is their name for feature

specifications/tracking. Each person, team or project in Launchpad can have

blueprints and has an overview of those related to them. Figure 3.6 shows the

21http://live.gnome.org/Tracker/Roadmap
22http://community.kde.org/Plasma/2011
23http://launchpad.net

http://live.gnome.org/Tracker/Roadmap
http://community.kde.org/Plasma/2011
http://launchpad.net

3.4. Collaboratively creating a roadmap 25

layout of the blueprint overview table for the Zeitgeist project24. It lists priority,

name, design (the status of the specification itself), delivery (the status/progress

of the specified feature), assignee and (release-)series. In addition to this each

blueprint has an individual page with additional information. Figure 3.7 shows

the layout of the page for a blueprint for the Zeitgeist project25. It contains

a description of the feature/task, information about the status and responsible

people or teams, related code branches and bugs, which sprint it is a part of, who

was asked to review the blueprint and a whiteboard area for free-text information.

Canonical has long been criticised for not releasing the source code of the platform

they are developing Free Software on and are asking other projects to use as well.

By now Launchpad is Open Source but it is still hard to deploy your own instance

because of licensing restrictions and lack of documentation.

Figure 3.6: Layout of a blueprint overview table for a project in Launchpad

In contrast to this idea collecting and tracking, Fried et al. of 37signals advocate

not caring about feature requests at all beyond reading them [FHL09]. Their

rationale is that with enough users you do not need to keep a list of them. Users

will keep reminding you again and again about what they want. This is likely true

for the range of commercial proprietary web applications they are developing. This

approach has several problems for Free Software development. The biggest one

is probably that the whole process is not transparent beyond the small developer

team. Users are not able to see what is planned and more importantly what is

not planned. For a project that has to work with a shortage of human resources

it also does not scale to deal with similar requests more often than absolutely

necessary. 37signals, developing proprietary web applications, also does not have

an interest in recruiting volunteers to support them. As a counter point, Krogh

et al. researched the behaviour of people joining an existing Free Software project

(Freenet) [vKSL03]. They found patterns that can predict if someone new to

a mailing list will actually produce something of value for the project. One of

their findings is that people tend to “lurk”26 for weeks or even months in order

to understand how the project works before becoming active. One of the criteria

they identified as critical in the first email a newcomer sends to the mailing list

is if that person is asking for a task to work on and the responses he receives.

Only very few were given concrete task suggestions. Having a roadmap will make

it easier to point them to possible tasks. The author’s own experience from the

24http://blueprints.launchpad.net/zeitgeist
25http://blueprints.launchpad.net/zeitgeist/+spec/performance-tracking
26Reading a mailing list or IRC channel without actively participating

http://blueprints.launchpad.net/zeitgeist
http://blueprints.launchpad.net/zeitgeist/+spec/performance-tracking

26 3. Related Work

Figure 3.7: Layout of a blueprint details page for a project in Launchpad

KDE project [Pin10] also shows that keeping contributors engaged after their first

task is an important part of turning them into long-term contributors. Krogh et

al. also found a pattern they call feature gifts. It describes the case where a new

contributor starts his work in a project with the announcement of a new feature.

This is often appreciated by the team but sometimes not in line with what they

3.4. Collaboratively creating a roadmap 27

had in mind for their product. A roadmap might facilitate discussions around such

feature gifts before work on them is started and thereby prevent disappointment

on the side of the new contributor because of wasted time and effort.

To let users influence the development process it might be useful to allow voting

on features. Winkelmann et al. reviewed rating systems of some of the most pop-

ular websites [WHP+09]. They identified characteristics that help classify rating

systems. They highlight the need for the input of ratings to be as easy as possible.

The systems they reviewed largely required some sort of sign-in to improve the

quality but they acknowledged that for some systems even that might be too high

a barrier to entry. They also differentiate between different sorts of vote aggre-

gation – for example showing just an average or cumulative score or showing a

distribution of votes. In addition they distinguish between websites where ratings

need to be approved and those where they are publicly visible immediately. They

also highlight the fact that some websites offered incentives for ratings as the “rat-

ing provides value for the consumer rather than the evaluator”. In the case of

rating feature requests in Free Software this is however largely not the case. They

point out the value of profile building through ratings as one possible incentive.

This can be applied in a Free Software project.

Get Satisfaction27 is a customer feedback platform that offers issue tracking, a

place to ask questions and give positive feedback and a forum to propose ideas

for companies wanting to engage with their customers. There are several things

to note about Get Satisfaction. It clearly shows the degree of engagement of em-

ployees of a given companies with the community there. Some companies are not

active at all (e.g., SAP, Debian) and it is just a platform for users to help other

users, some companies only read (e.g., Facebook, Nokia) and other companies ac-

tively reply to issues and respond to requests (e.g., Diaspora, Intel). This sets the

right expectation for anyone participating there and helps prevent disappointment

caused by wrong expectations. In addition they show how many people partici-

pated in a given topic and how many replied and if an official representative of the

company has participated (Figure 3.8). (Given the fluid nature of a Free Software

community this official status can be hard to determine for anyone outside the

core team.) Each answer can be marked as “best answer” and is then prominently

shown at the top of the discussion to make it easier to see the right and helpful

answers quickly. Each topic additionally has a mood indicator. When opening a

topic or answering one Get Satisfaction offers four different smilies to indicate the

poster’s mood. These are then aggregated in a small bar chart representing the

mood of the topic (Figure 3.8). Last but not least they make it very easy and

obvious to indicate you are interested in a topic or affected by a problem as well.

Updates to the topic are then sent by email to interested people. Overall it is a

good system that seems to satisfy its users but it has two major problems for Free

Software projects wanting to use it: i) it is not Free Software and ii) it focuses

too much on companies and their representatives.

27http://getsatisfaction.com

http://getsatisfaction.com

28 3. Related Work

Figure 3.8: Example of an involvement and mood indicator of Get Satisfaction

3.5 Quality Assurance

In [vKSL03] one of the Freenet developers is cited: “A public release always leads to

increased testing by new users, which in turn leads to the discovery of new bugs in

the software, and commit of debugged code.” This cycle is important for a project.

Long sprints without feedback lead to undiscovered bugs due to the limited number

of use cases of the core team. They might not use the product in the way some

or even most of their target audience does and therefore not be aware of critical

bugs or behaviour changes. Aberdour identifies a large sustainable community as

one of the key factors of high quality in Open Source software [Abe07]. “The sheer

size of the bug-reporting group will ensure that more people test the system (on

more platforms) than any commercial organization could hope to achieve. This

group plays a key role in reducing defect density.” Raymond has been cited many

times “Given enough eyeballs, all bugs are shallow.”, meaning that with enough

users all bugs will be discovered at some point [Ray01]. Mozilla, for example, has

started Firefox Input28 to identify problematic areas with the help of its large user

base. Among other things it shows how important indicators of user satisfaction

(start-up time, page load time, responsiveness, stability, features) change over

time, popular system configurations and which websites are most problematic for

use with Firefox for a large number of people. Identifying bugs is of course only the

first step towards a high-quality product. The other important factors according to

Aberdour are code modularity, project management and the testing process. The

other important rule Raymond coined is “release early, release often” [Ray01]. The

idea behind this being that only if the code gets to testers early and often they can

give feedback, find bugs and contribute code. Peer review is a key part of quality

assurance in Free Software and by its nature it is accessible to more reviewers than

28http://input.mozilla.com

http://input.mozilla.com

3.5. Quality Assurance 29

any closed source program. As McConnell points out however, for this approach to

quality assurance to work a large number of users that are both interested in and

capable of debugging source code are needed [McC99]. Experience from a large

number of projects suggests that these people do indeed exist. Zhao and Elbaum

found that in large Open Source projects around 80% of the hard bugs are found

by users and that these projects receive over 60% of their feedback within hours

(the numbers are smaller for smaller projects) [ZE03]. McConnell also points out

that this way of working is effective and fast but not necessarily efficient. Bollinger

et al. point out however, that this way of development should rather be seen as

the minimal set of necessary rules and guidelines for good software development

that removes all unneeded management and tool overhead [BNST99]. They ask:

“Can you justify adding a new control, method, or metric to the process when

open-source methods already work fine without it?”

Halloran and Scherlis list important attributes a quality-related tool or process

must have in order to be adopted in projects following Open Source practices.

They identified: an incremental model for quality investment and payoff, incremen-

tal adoptability, a trusted server-side implementation that can accept untrusted

client-side input and a tool interaction style that is adaptable by practising Open

Source programmers [HS02].

Otte created a quality assurance (QA) framework for Open Source software [Ott10].

It helps identify areas a project needs to concentrate on to deliver a better prod-

uct. It identifies 23 processes: Requirement Management; Requirement Review;

Process Documentation; Product Documentation; Project Organisation; Project

Coordination; Team Communication; Knowledge Capturing; Team Education; In-

frastructure Management; Design Control; Development Control (Coding); Con-

tinuous Code Quality Control; Code Review/Inspection; Peer Review; Defect Man-

agement; Unit, Integration and Regression Testing; Release Management; Build

and Release Check; Quality Management; Software Quality Assurance; Process

Change Management; Defect Prevention. The project is rated with a score from

0 (non-existence) to 8 (existence) for each of them according to how much of the

process is implemented. In addition each process is rated according to how func-

tional, usable, reliable and efficient it is. Functionality is rated on a scale from

-4 (not) to 4 (overly), usability and reliability on a scale from -1 (partially) to 1

(strongly) and efficiency from -2 (not) to 2 (overly). The sum of these points for

all processes is the Process Capability Score (PCS). It can take values between 0

and 368. Each process is also assigned a value between 0 and 5 depending on how

important it likely is for the whole project. Otte also suggests a Process Success

Score (PSS) metric to determine if a project is a success or disappointment.

30 3. Related Work

“Our lives improve only when we take chances – and the first and

most difficult risk we can take is to be honest with ourselves.”

Walter Anderson

4
Analysis of the Current Development

Processes

In this chapter the current development processes of Amarok and Halo are anal-

ysed. The focus is on who the stakeholders are, which tools are being used and

which problems the teams are facing currently.

The analysis has been performed based on twenty structured interviews with the

different involved parties. For Amarok the interviews were conducted privately

via Internet Relay Chat (IRC) and Jabber since the team is spread out across the

globe. For Halo most of the interviews were conducted privately, face-to-face inside

ontoprise. The interviews with contributors outside ontoprise were conducted via

IRC. The interview questions have been kept very general and open to avoid

leading questions and to minimize any influence on what the participants thought

was important. They can be found in Chapter B. The interviews were conducted in

private to allow the participants to express their opinions freely without having to

fear any negative consequences. This ensures that the real problems are uncovered

and get resolved.

The interviewees have been chosen based on their time in the project and their

area of involvement.

During the interviews several problems and obstacles in the development processes

were brought up. We will concentrate on the ones that are most important to each

project and can be solved by technical means.

32 4. Analysis of the Current Development Processes

Figure 4.1, Figure 4.2 and Figure 4.3 give an overview of the concepts around

the development processes and their relations. Figure 4.1 shows the basic model

of a typical Free Software project where contributors move from the outer parts

to the inner parts and back during their involvement in the project. As can be

seen in Figure 4.3, there are different contributor roles. The developer writes code

and influences the release plan and design documents together with the release

or project manager. Through this they all influence the release of the actual

source code. Bug triagers screen incoming new bugs reported by testers. The

bug reports might be triggered by testing according to a test case; if not they

might lead to the creation of a new test case. During the development period

developers receive advice on usability from a usability advisor, who might create

mock-ups to illustrate concepts. At the end of a release cycle the marketing

team promotes the release through announcements and packagers package the

code for easy installation. The program is translated by a team of translators and

documented by documentation writers. Users are the consumers in this ecosystem,

however, some of them are active contributors in the sense that they provide

feedback to influence the development process, e.g., filing bug reports or feature

requests.

users

contributors

core team

Figure 4.1: Onion model of a typical Free Software project

bug

feature

code

roadmapvision/
goal

feature request

bug report

Figure 4.2: Important artefacts in the development processes (arrows indicate influ-
ence)

33

co
m
m
u
n
it
y
m
an

ag
er

tr
an

sl
at
or

re
le
as
e
m
an

ag
er

d
o
cu
m
en
ta
ti
on

w
ri
te
r

b
u
g
tr
ia
ge
r

co
n
tr
ib
u
to
r

u
sa
b
il
it
y
ad

v
is
or

te
st
er

p
ro
je
ct

m
an

ag
er

m
ar
ke
ti
n
g

p
ac
ka
ge
rs

d
ev
el
op

er

p
ac
ka
ge
s

tr
an

sl
at
io
n

m
o
ck
-u
p
s

an
n
ou

n
ce
m
en
ts

te
st

ca
se

re
le
as
e
p
la
n
/

d
es
ig
n
d
o
cu
m
en
t

re
le
as
e

b
u
g
re
p
or
t

d
o
cu
m
en
ta
ti
on

co
d
e

u
se
r

fe
ed
b
ac
k

ro
le

ou
tp
u
t

en
ga
ge
m
en
t

F
ig
u
re

4
.3
:
C
o
n
tr
ib
u
to
r
ro
le
s
in
vo
lv
ed

in
th
e
d
ev
el
op

m
en
t
p
ro
ce
ss
es

an
d
th
e
o
u
tp
u
t
of

th
ei
r
w
o
rk

34 4. Analysis of the Current Development Processes

4.1 Halo

The interviews to map out the Halo development process were conducted with

the current and former product manager, project manager, user documentation

writer, usability expert, the quality assurance (QA) manager, two developers and

two community contributors. All but the last two are employed by ontoprise.

Figure 4.4 shows how long they have been in the team.

Figure 4.4: Distribution of the ten interview partners based on how many years they
have been involved in Halo

4.1.1 Release Cycle

Halo’s release cycle (Figure 4.5) is feature-based. This means a release is done

when a planned set of features is implemented and tested. At the beginning of

the cycle these features are chosen and designed in the design phase. This phase

and its result are not publicly accessible. In the following implementation phase

features are implemented, and in the quality assurance phase they are tested and

polished. Parts of these phases are public, such as the Apache Subversion (SVN)

repository containing the code. However, there are internal releases for these

phases that are usually not published for wider testing, which means that there

are no real pre-releases. The test cases used in the quality assurance phase are

also not public. A timeline for the whole cycle exists, but finishing a given set of

features is more important than meeting this schedule.

A feature freeze is not enforced and features can potentially be implemented until

release.

4.1. Halo 35

feature design

feature development

quality assurance

final release

pre-final release

design document

closed

open

partly closed

Figure 4.5: Halo’s release cycle

4.1.2 Activities

The tasks and tools in Halo’s development process can be grouped around six

activities. They are described in the following sections. Usually each team member

is only involved in a few of these activities.

Halo

activities

feature

design

writing

code

quality

assurance

user

engage-

ment and

support

contributor

engage-

ment

promotion

4.1.2.1 Feature design

At the beginning of the development cycle the whole team comes together to

design features and plan the next release. This results in a design document that

36 4. Analysis of the Current Development Processes

contains several milestones and is signed-off on by Vulcan. This is usually very

detailed and is written in an internal wiki. It contains feature specifications, use

cases and user interface (UI) mockups. Features are grouped into milestones there.

These milestones constitute a roadmap for the next months.

In this phase everyone in the core team is involved with coming up with ideas for

the next version(s). The actual feature specification is then written by the devel-

opers with help from the technical manager and project manager. The usability

engineer gives advise on use-cases and provides mock-ups.

Suppliers Inputs Process Output Customers

users, core
team, Vulcan

requirements,
vision

brainstorming ideas for fea-
tures

core team

core team ideas for fea-
tures, feature
requests

designing fea-
tures

design docu-
ment

core team,
Vulcan

Vulcan design docu-
ment

signing-off
on design
document

signed con-
tract

ontoprise

Table 4.1: SIPOC for feature design in Halo

4.1.2.2 Writing code

Code is developed mainly in SVN trunk by developers inside ontoprise. Each

developer has a number of extensions he is responsible for and there is little overlap.

Developers however regularly help each other in case they run into problems in

their extensions and need advice. This happens on an internal developer mailing

list if it is a general inquiry or in private email and Skype chats for specific

problems concerning only two or three developers. In addition weekly status

meetings are held to track progress and identify obstacles and problems.

As of December 2010 the suite of Halo extensions contains about 334,500 lines

of code according to SLOCCount1 and has an estimated development effort of

around 1000 Person-Months. CLOC2 reports a code:comment lines ratio of about

5:2 for the PHP and Javascript source files3.

Delaying unfinished features to the next release is relatively hard since they are

part of a contract. This means features are being developed until very late in a

cycle. This can lead to poor quality because of a lack of proper QA during that

time.

Not much code is being written outside of ontoprise by volunteer developers. The

infrastructure for them to do so is however in place. The SVN repository is

1http://www.dwheeler.com/sloccount
2http://cloc.sourceforge.net
3Opinions vary widely about what an ideal code:comment ratio is. It is given here as one

indicator that can be used to compare the two projects.

http://www.dwheeler.com/sloccount
http://cloc.sourceforge.net

4.1. Halo 37

public for read access and it is possible to get an account with commit rights after

submitting a few good patches4.

Suppliers Inputs Process Output Customers

developers design docu-
ment

writing code features users, Vulcan

Table 4.2: SIPOC for writing code in Halo

4.1.2.3 Quality assurance

Two things are done to ensure quality standards. First, a number of automated

test cases is run every night on a Hudson instance5, a continuous integration

server. The results are emailed to the internal developer list once a day. In

addition, before a release a test plan is executed. This means a number of test

cases6 are run manually to ensure important functionality is working as expected.

Bug reports are reported throughout the release cycle in a public bug tracker7

running the Bugzilla software. Based on the component they are automatically

assigned to the responsible developer or, if there is none, to an internal team mail-

ing list that then assigns the bug to the appropriate developer. As Figure 4.6 and

Figure 4.7 show, the vast majority of bug reports come from ontoprise employees

and are also closed by them. In the weeks before a release (February, May, August,

December) spikes in bug activity can be seen.

Figure 4.6: Number of opened bug reports in 2010 for Halo (ontoprise employees are
identified by their @ontoprise.* email address)

4Code changes that fix a particular bug or implement a feature
5http://dailywikibuilds.ontoprise.com:8080
6Currently about 160 test cases are available.
7http://smwforum.ontoprise.com/smwbugs

http://dailywikibuilds.ontoprise.com:8080
http://smwforum.ontoprise.com/smwbugs

38 4. Analysis of the Current Development Processes

Figure 4.7: Number of closed bug reports in 2010 for Halo (ontoprise employees are
identified by their @ontoprise.* email address)

Suppliers Inputs Process Output Customers

Hudson code from
SVN

testing auto-
matically

test result on
website and
in email

core team,
testers

core team code from
SVN

testing manu-
ally

test result in
test tracker

core team

users, core
team

code reporting
bugs

bug reports developers

developers bug reports,
test results

fixing bugs bug fixes users

Table 4.3: SIPOC for quality assurance in Halo

4.1.2.4 User engagement and support

User engagement and support happens largely in the SMWForum8. It contains

the user documentation for all extensions, project news and a discussion board9

where users can ask questions. The user documentation is created and maintained

by a documentation writer and a few students helping her. Figure 4.8 shows the

number of visits to SMWForum in 2010.

In the discussion board each sub-forum is assigned a moderator who has to ensure

each request receives a reply within three working days. It is used actively and is

the main place to find support. Close to 1600 posts have been written by about

250 users since September 2008. Most of the posts (about 45%) and topics (about

40%) are in the sub-forum“Installing SMW+, SMW or the halo Extension”which

points to installation of the Halo suite being a major obstacle to its usage.

8http://smwforum.ontoprise.com
9http://smwforum.ontoprise.com/smwboard

http://smwforum.ontoprise.com
http://smwforum.ontoprise.com/smwboard

4.1. Halo 39

Figure 4.8: Number of visits to smwforum.ontoprise.com in 2010

In addition, support is also given on the Semantic MediaWiki (SMW) mailing

list10 and IRC channel11. The IRC channel however is not used by the Halo core

team but instead monitored by two team members who direct people to other

venues if necessary. Sharing these support channels has the advantages that it

raises awareness in the wider community, the workload is spread among more

people and that there are more people who can potentially answer a question.

The disadvantage is that some SMW contributors/users feel uncomfortable with

ontoprise’s involvement there as has been expressed on the mailing list.

Suppliers Inputs Process Output Customers

community support
requests

giving sup-
port

answer to sup-
port request

user

core team e.g., new re-
lease

announcing
news

announcement community

documentation
team

design doc-
ument, user
questions

writing docu-
mentation

documentation user

Table 4.4: SIPOC for user engagement in Halo

4.1.2.5 Contributor engagement

New contributors are important for the project as a source of feedback, require-

ments and testers as well as for dissemination of Halo.

For developers the SMWForum contains a Development section12 which has infor-

mation about how to get the source code, contribute patches, the release status

and available junior jobs13. The information about the status of the current release

10semediawiki-user@lists.sourceforge.net
11#semantic-mediawiki on freenode
12http://smwforum.ontoprise.com/smwforum/index.php/Development/Main Page
13Easy bugs for new contributors to get used to the code base

http://smwforum.ontoprise.com/smwforum/index.php/Development/Main_Page

40 4. Analysis of the Current Development Processes

is updated by hand and therefore not always up-to-date. Potential contributors

are also missing a list of open tasks to identify where they can help.

For testers a public testing contest was started where ontoprise gave away prizes

for bug reports before a release. This was done only once so far and had problems

due to the perception of ontoprise within the community. Outside of this contest

bug reports are always possible though Bugzilla and the discussion board.

An interview series called Semantic Minds14 was started to increase the visibility

of people contributing to SMW and Halo.

Suppliers Inputs Process Output Customers

core team design docu-
ment, sched-
ule

providing
information
about de-
velopment
process

wiki pages contributors

core team pre-release public testing bug reports,
feedback

testers

users software
defect

reporting
bugs

bug reports developers

core team,
community

contributions increasing vis-
ibility of con-
tributors

promotion community

Table 4.5: SIPOC for contributor engagement in Halo

4.1.2.6 Promotion

Promotion is done via the SWMForum website and partially through the SMW

mailing list. Activities are planned in the internal wiki and in internal meetings.

Release announcements are written by the product manager and then reviewed

by the project manager and someone involved in community engagement activi-

ties. Releases and other news are also posted on Twitter15 (@SMWForum) and

identi.ca16 (!SMW group).

4.1.3 Problems

Halo is facing a number of problems that can be grouped into four main areas.

They are explained in the next sections.

14http://smwforum.ontoprise.com/smwforum/index.php/SemanticMinds
15http://twitter.com
16http://identi.ca

http://smwforum.ontoprise.com/smwforum/index.php/SemanticMinds
http://twitter.com
http://identi.ca

4.1. Halo 41

Suppliers Inputs Process Output Customers

core team schedule,
design docu-
ment, ideas

planning and
execution of
promotion
activities

promotional
activities

community,
users

core team design docu-
ment

writing and
publishing
release an-
nouncements

release an-
nouncement

users

Table 4.6: SIPOC for promotion in Halo

Halo

problems

commu-

nication

of vi-

sion/goal

coordi-

nation

of QA

transpar-

ency and

coordi-

nation

user input

4.1.3.1 Need for clearer communication of vision/goal

There seems to be a vision for Halo but it is not communicated enough both inside

and outside of the team. People have a vague understanding what the vision is

but are uncertain about it and can not express it in a few sentences. This leads to

confusion about whether specific features are needed and requested by the target

audience and if the suite is likely a good fit for a certain use-case. It makes it

hard to argue in favour of or against the addition of features, which leads to

tension. Two interviewees expressed their concern about the product becoming

too complex for average users because of this lack of vision and defined target

audience.

4.1.3.2 Need for better coordination of QA

Halo has a QA system but it does not seem to be effective enough due to the

following reasons: i) short release cycle, ii) feature additions until shortly before

release and iii) the clear focus on new features instead of stabilizing existing code.

42 4. Analysis of the Current Development Processes

The interviews made it clear that a bigger focus needs to be on stabilizing exist-

ing features for a while instead of adding many new ones. There is a feeling of

development being very rushed. The adoption of Halo inside the community is

hindered by these technical problems.

4.1.3.3 Need for more transparency and coordination

Problems arise repeatedly inside the team due to extensive documentation and

planning documents that do not reflect reality, e.g., if they are outdated. This

leads to work in areas that are not urgent as well as work based on incorrect

assumptions. Problems mainly occur where different teams need to work together

(e.g., documentation and engineering) because they rely on outdated information.

One of the main reasons for this seems to be that the internal wiki and its ontology

are cumbersome to use for the employees. It was also brought up that the weekly

developer meetings are very useful, but are not open and transparent for the rest

of the team. One employee noted that they are sometimes missing the big picture,

which makes it hard to make decisions, for example, about what is important to

get done right now and what can be delayed.

Outside the team, missing transparency leads to potential contributors not turning

into actual contributors. They are lacking an overview of what is being worked on,

which phase of the development cycle the product is in and where help is needed.

In addition, it leads to distrust inside the community since it is not visible who

is involved, what their roles are and what is planned for the future. Since Halo

depends on MediaWiki (MW) and SMW, among others, coordination with those

projects is key. It was suggested to close the separate Halo SVN repository and

move to MW’s to make this easier.

One interviewee remarked: “A few people in the community have an image of

Halo that largely consists of feature creep and a lot of patches.” This image could

be improved drastically with more transparency. As one example, the reasons for

applying certain patches to MW and SMW would be clearer.

4.1.3.4 Need for more user-input

Several interviewees raised their concerns about the small extent of user input.

At the moment, development is driven largely by requirements from Vulcan. To

create a product that can gain significant adoption in its market, increased focus

on input from users is needed. To do this it needs to not only be easy (low technical

and social barrier to entry, not too time-consuming) and clearly communicated

that this is welcome, but for there to be follow-through and have this user input

acted upon in the development of the product. Giving input is also one of the

first and easiest contributions someone can make to a project on their way to

becoming a valued part of the team. Past attempts to collect more user input

4.2. Amarok 43

likely often did not receive a lot of responses because they were too cumbersome

(e.g., an online survey that took more than 30 minutes to complete).

4.1.3.5 Other problems

The interviews and personal observations and conversations have hinted at other

(mainly social) problems in the project that are out of the scope of this thesis.

They should however be addressed to ensure that Halo can become widely adopted.

Some of them will likely be improved as a side effect of the work in this thesis.

4.2 Amarok

The interviews to map out the Amarok development process were done with six

developers, a usability advisor, a user documentation writer/community facilitator

and a bug triager. All of them are volunteer contributors and represent the core

team as well as occasional contributors. Figure 4.9 shows how long they have been

in the team.

Figure 4.9: Distribution of the ten interview partners based on how many years they
have been involved in Amarok

4.2.1 Release Cycle

Amarok’s release cycle (Figure 4.10) is time-based and about eight to ten weeks

long. This means that a release contains all of the features that are ready at a

given point in time called feature freeze. Unfinished features are pushed to the

next release. Being a volunteer-driven Free Software project this is not only very

easy but is in fact necessary, since it is not possible to foresee the availability of

the involved contributors.

44 4. Analysis of the Current Development Processes

creation of release plan

feature design
and development

quality assurance

quality assurance

final release

pre-final release

feature and string freeze

open

partly open

Figure 4.10: Amarok’s release cycle

At the beginning of the cycle the team creates a plan that includes dates for string

freeze17, feature freeze18 and releases.

There is no clear distinction between when features are designed and implemented.

This largely happens at the same time and depends on the availability of team

members and their other commitments. In general, they are free to design and

implement features in git master19 at any time during the design/implementation

phase. If a feature is more involved than what can be accomplished in one cycle,

it can be developed at any time in a branch and then get merged into git master

when it is open for feature additions. A small part of this development is done in

private git branches on the developer’s computer before it is published.

The time between feature freeze and release is used for QA. Before the final release

of a version there will usually be one or more public pre-releases that are tested

by interested users and distributors. This gives a quick feedback cycle and allows

for improvements before the final release.

17The date from which no new translatable strings can be added to that release, to allow
translation of the whole UI

18The date from which no new features can be added to that release, to allow enough time
for testing and polishing. It is often on the same day as string freeze.

19The default development branch in the Amarok git repository

4.2. Amarok 45

4.2.2 Activities

The tasks in the team can be grouped around six activities. They are described

in the following sections. It is not uncommon for a team member to be involved

in more than one of those activities.

Amarok

activities

release

man-

agement

writing

code

quality

assurance

user

engage-

ment and

support

team en-

gagement

and man-

agement

promotion

4.2.2.1 Writing Code

Developers are the ones actually writing the code that is the basis for everything

else in the project. They make the ultimate decision of what goes into the product

in the end. It is ultimately up to them to implement a feature or not – or to

fix a bug or not. However, Amarok is a project that very much aims at multi-

party consensus and finding the best solution for all parties to a given problem.

Developers will listen to input from other contributors and users.

The current version control system in use is git. This has a few advantages over the

previous version control system (SVN) but also brings challenges. Code is either

committed to git master directly while it is being worked on, or it is developed in

a branch (which is a lot easier with git than it was with SVN previously). These

branches can either be private on a developer’s computer or shared publicly, for

example on KDE’s main git server. This leads to a need for more coordination

than was needed previously – something some developers still have to get used to.

As of December 2010, Amarok contains about 208,700 lines of code according

to SLOCCount and has an estimated development effort of around 660 Person-

Months. CLOC reports a code:comment lines ratio of about 7:1 for the C++

source files.

Most of the communication around writing code happens on IRC and the de-

veloper mailing list20. For longer discussions and problem-solving IRC is often

preferred since it allows real-time communication. The developer mailing list is

20amarok-devel@kde.org

46 4. Analysis of the Current Development Processes

used for announcements and discussions that require input from a larger part of

the core team. The list also receives notifications about review requests from

ReviewBoard21, where patches from new contributors can be reviewed as well as

patches by established developers who want feedback. One-on-one communication

is also performed via different instant messaging and collaboration services like

Jabber and Skype.

Bugzilla22 is used for bug handling. Most developers have searches based on their

area of expertise and are subscribed to bugs in their component automatically.

There is a tendency to avoid the web application and instead deal with bugs via

email. This might be due to issues with Bugzilla itself or simply be due to the

amount of bugs making the user interface difficult to deal with.

Sometimes a short design document or concept explanation is added to the project’s

wiki23 to have a basis for a future discussion. However, this does not happen for

most of the features being developed.

Suppliers Inputs Process Output Customers

developers ideas, feature
requests

implementing
a feature

feature users

developers bug report fixing a bug bug fix users
contributors patch posting a re-

view request
review re-
quest

developers

developers review re-
quest

reviewing
a review
request

comment,
commit of a
patch

contributors

contributors ideas, feature
requests

designing a
new feature

design docu-
ment

developers

Table 4.7: SIPOC for writing code in Amarok

4.2.2.2 Release Management

The release manager is responsible for proposing and executing the release schedule

and making releases. The release schedule is created at the beginning of a cycle.

The team is asked for input based on what each developer has planned. With

this information the release manager makes a suggested release schedule that is

published and accepted if nobody disagrees with it. For the actual release she

needs to tag the release in git, create the tarball24 and publish it for packagers

and users at the appropriate times.

The work performed by other teams depends on the created release schedule.

Translations of the software itself are done by KDE’s translation teams. They

21http://git.reviewboard.kde.org
22http://bugs.kde.org
23http://amarok.kde.org/wiki
24Compressed archive of the source code of a release

http://git.reviewboard.kde.org
http://bugs.kde.org
http://amarok.kde.org/wiki

4.2. Amarok 47

depend on a string freeze in the release schedule to have a stable base to translate

before release. As Amarok has started out on Linux and is still very Linux-centric,

the project is dependent on distributions to package the software for easy instal-

lation. This is performed by packagers who receive the tarball of the release a

few days before the official release to be able to have the packages ready for their

users on release day.

Release management tasks are mostly coordinated on IRC. Input gathering for

the release schedule creation as well as announcements are done on the devel-

oper mailing list and respective team lists for packagers and translators. The

finished schedule is published in a public Google Calendar together with other

Amarok-related events25 so interested parties can easily subscribe to it in a calen-

dar application.

Bugzilla is used for release management mainly to check the status of bugs that

can potentially block a release. During the development cycle, such bugs are

tagged with the keyword release_blocker and can then easily be searched for.

This makes it possible to quickly judge if there are any bugs that must not be in a

widely-used release, such as bugs that could cause data loss or make the program

otherwise unusable.

Suppliers Inputs Process Output Customers

contributors plans for fea-
tures, other
schedules

creating
the release
schedule

release sched-
ule

community

release man-
ager

bug reports,
contributor
feedback

evaluating
the code for
release

decision contributors

developers code doing the re-
lease

tarball packagers,
users

release man-
ager

release sched-
ule

coordinating
with other
teams

communica-
tion, coordi-
nation

other teams
including
packagers
and transla-
tors

Table 4.8: SIPOC for release management in Amarok

4.2.2.3 Quality assurance

Bugsquad is the group that looks at bug reports and triages them. This includes

asking for further information when the reporter did not give enough details and

making sure they are actually bugs in Amarok and not in another product or user

errors. If the relevant developer is not already subscribed to the bug they notify

him. They also make the release manager aware of release-blocking bugs.

25Team member birthdays, meetings, conferences and trade shows

48 4. Analysis of the Current Development Processes

IRC is used to get input and assessments of bugs from other team members and

users. This solves questions like “is this already fixed in the development version?”

and “can anyone reproduce this bug?” in case the triager is unable.

They are notified of new bugs most of the time via a special mailing list that is set

up to receive all Bugzilla activity26 for Amarok and an IRC bot that posts new

bug reports to the user channel.

Figure 4.11 shows the number of new bug reports filed in 2010. It is hard to

identify which of these are reported by core team members since not all of them

have an @kde.org email address and use it for their Bugzilla account and some

other owners of these addresses are not members of the Amarok core team. In

addition, the boundary of the core team is flowing.

Figure 4.11: Number of opened and closed bug reports in 2010 for Amarok

On top of that the internal wiki contains an outdated checklist of important func-

tionality that should be tested before a release. It is currently unused, however.

Suppliers Inputs Process Output Customers

community source code testing bug reports,
feedback

developers

bug squad bug reports triaging bugs comments on
bug reports

community

users bug reports fixing bugs bug fixes users

Table 4.9: SIPOC for quality assurance in Amarok

4.2.2.4 User engagement and support

Users are important in the development process in various aspects: they pro-

vide the core team with requirements and feedback; they use and test the in-

26This includes new bug reports, comments on existing reports and changes to the status and
subscriber list.

4.2. Amarok 49

development code throughout the entire release cycle; and depending on how ad-

venturous and knowledgeable each user is and how much he wants a given feature

he might compile right from git master regularly, test pre-final releases or only use

final releases. Therefore, the team tries to keep git master usable at all times and

to give advanced notice of commits that might cause bigger problems. Users also

provide support to other users in various venues, thereby taking a lot of support

work off of the core team in some areas. In addition, they promote Amarok to

their peers online and offline and thereby help the userbase grow. Ultimately, this

is the pool new contributors are recruited from to keep the project running.

Support by users and team members is done mainly in three places: IRC27, the

user mailing list28 and the forum29. Developers regularly provide support on the

mailing list and on IRC but rarely the forum. Recently there is also a trend of

users seeking help in social media like Twitter, identi.ca or Facebook30. These

users usually end up being referred to other channels more suitable for support.

Social media is also valuable as it gives an easy way to be close to and interact

with the team. News can be spread quickly and a lot of potential volunteers can

be reached for tasks.

User feedback comes in different forms. The main ones are bug reports in Bugzilla,

KDE’s forum, IRC and mailing list. KDE’s forum additionally provides a place

called Brainstorm31 where users can post ideas and refine and vote on existing

ones.

Documentation is done in two wikis, Amarok’s own wiki for specialised documen-

tation and KDE’s UserBase32 for general user documentation.

The main website and news outlet is a Drupal-based website33 that also contains

screenshots, feature lists, contributor blogs and links to support resources. Fig-

ure 4.12 shows the number of visits to the main website and wiki in 2010.

4.2.2.5 Team engagement and management

Team engagement and management is the main task of the community manager

and her team. This includes facilitating discussions and meetings when needed,

providing access to resources and finding volunteers for urgent tasks. The commu-

nication for this is mainly done via IRC and mailing lists, but social media is also

used where and when appropriate. Social media in this context is mostly used as

a tool to strengthen the bonds between team members, which is crucial in a distri-

buted team of volunteers. Facebook and other social media outlets make it simple

27#amarok on freenode
28amarok@kde.org
29http://forum.kde.org
30http://facebook.com
31http://forum.kde.org/brainstorm.php
32http://userbase.kde.org
33http://amarok.kde.org

http://forum.kde.org
http://facebook.com
http://forum.kde.org/brainstorm.php
http://userbase.kde.org
http://amarok.kde.org

50 4. Analysis of the Current Development Processes

Figure 4.12: Number of visits to amarok.kde.org in 2010

Suppliers Inputs Process Output Customers

community support
request

giving sup-
port

answer users

community new features,
releases,
events

promoting
Amarok

promotion users

users feedback receiving feed-
back

recommenda-
tions for
changes

contributors

contributors support re-
quests, new
features

providing doc-
umentation

documentation users

contributors requests for
information

providing gen-
eral informa-
tion

information users

Table 4.10: SIPOC for user engagement and support in Amarok

to stay up-to-date with what is happening in the life of other team members, and

thereby enables the team to support each other in times of need as well as share

moments of joy.

4.2.2.6 Promotion

The promotion team, called Rokymotion, is among other things responsible for

everything having to do with outreach. This includes writing release announce-

ments and blog posts about new developments, engaging in social media34, giving

talks at conferences and staffing booths at events. While all contributors perform

34Mainly @amarok on Twitter and identi.ca, the !Amarok group on identi.ca and the Amarok
fan page on Facebook

4.2. Amarok 51

Suppliers Inputs Process Output Customers

core team request for
meeting,
urgent topic

facilitating
meetings and
discussions

meeting, dis-
cussion

community

core team task finding volun-
teers for (ur-
gent) tasks

volunteer community

community
manager

team relation-
ships

strengthening
the bonds in
the team

better team-
work

community

Table 4.11: SIPOC for team engagement and management in Amarok

some degree of outreach, the Rokymotion members are responsible for the biggest

tasks. They also help with the logistics of attending conferences.

Team communication happens on a special mailing list35 and IRC channel36. A

special wiki also existed but has been abandoned. Since then writing of announce-

ments happens mainly on Google Docs37 because it allows real-time collaboration

which is often needed for announcement writing.

Suppliers Inputs Process Output Customers

core team release plan,
changelog,
new features

writing
release an-
nouncements
and blog
posts

release an-
nouncements,
blog posts

users

community news, re-
leases, new
features

giving talks talks, infor-
mation

users

community conference an-
nouncement

attending con-
ferences

conference
attendance,
publicity

users

Table 4.12: SIPOC for promotion in Amarok

4.2.3 Problems

Amarok is facing a number of problems that can be grouped into four areas. They

are explained in the next sections.

35amarok-promo@kde.org
36#rokymotion on freenode
37http://docs.google.com

http://docs.google.com

52 4. Analysis of the Current Development Processes

Amarok

problems

clear vi-

sion/goal

road map

transpar-

ency and

coordi-

nation

coordi-

nation

of QA

4.2.3.1 Lack of a clear vision/goal

Amarok has always been about helping people rediscover their music. Amarok

2.0 was a reinvention, expansion and re-focussing on this goal. It is now reached

and the team is lacking a clear target at which to aim. Such a target is needed for

recruiting volunteers, positioning in a market of seemingly endless competitors as

well as focusing of available resources.

Since Amarok 2 is a rewrite the team has decided to consciously drop some of the

features of Amarok 1.4 because they were either very hard to maintain or were

only used by a few users and made the experience worse for the others. Having a

more clearly defined goal and target audience would make communication about

these choices less difficult.

4.2.3.2 Lack of a road map

Amarok is lacking a road map. However, it is important to have one for several

reasons. Having a roadmap would make it easier to communicate to potential

volunteers where help is needed and to users when their requested feature will

likely be implemented. It would reduce duplication of work, which has become

a larger problem since the migration from SVN to git, and would allow feedback

from other team members as well as users to be heard early in the process. In

addition it would ease the creation of a release plan at the beginning of a cycle

and make it possible to plan further ahead than just one cycle.

During the interviews concerns were raised about a road map being restrictive

and thereby potentially hurting the project. At the same, time all interviewees

seem to see a need for more planning.

4.3. Comparison and conclusion 53

4.2.3.3 Need for more transparency and coordination

At the moment, a lot of knowledge about Amarok’s code and community and

the plans around it are not written down but are instead communicated in con-

versations between contributors and contributors and users. Since Amarok is a

volunteer project, it is always at risk of losing key contributors and their knowl-

edge. This needs to be avoided. More transparency would also make it easier for

the team to communicate the needs of the project and for new contributors to

find their place in the project quickly.

Duplication of work and misunderstandings are also happening because of a lack

of communication. In a distributed team having an overview of who is working

on what is especially important.

4.2.3.4 Need for better coordination of QA

Amarok’s bug triagers, due to the size of the userbase, have to deal with a large

number of bug reports. They have reached a volume where each developer can no

longer look at all bug reports. Developers need help finding the bug reports that

they need to concentrate on at any given time. Bug triagers need an easy way

to communicate the pertinent bug reports to the appropriate developers and to

the release manager. In addition, no test cases are available for volunteers to test

before a release.

4.2.3.5 Other problems

Just like Halo, Amarok has a number of other (mainly social) problems that are

outside the scope of this thesis. The team is working on them and hopefully the

work in this thesis will support that effort.

4.3 Comparison and conclusion

The two projects are evidently very different. Table 4.13 lists some of the features

that distinguish both projects, all of which have large impacts. However, despite

their differences, they use a lot of the same or similar tools (Table 4.14) and face

very similar problems.

Figure 4.13 shows the points Halo and Amarok received for each of the processes

tracked by the QAfOSS Model [Ott10]. The processes were rated based on the in-

terviews and the author’s experiences within the projects. Halo reached a Process

Capability Score (PCS) of 172 and Amarok of 156. The maximum PCS is 368.

54 4. Analysis of the Current Development Processes

Halo Amarok

age of project (time since
first public release)

2 years 7 years

subject semantic web music
main programming lan-
guage

PHP C++

motivation mainly extrinsic mainly intrinsic
volunteer vs paid mostly paid volunteer
boundaries of core team clear unclear
main interaction media personal interaction,

mailing lists, bug re-
ports

IRC, mailing lists

community outside the
core team

small large

openness relatively closed relatively open
“release early release of-
ten” philosophy

no yes

meetings many few
planning extensive little
direction set by management and team individual developer
release schedule based on features time
focused QA yes no
funding Vulcan users
legal entity company non-profit organisation
geographical location of
core team members

Germany worldwide

testing of development
code by users

rarely often

distribution done by core team distributions

Table 4.13: Comparison of some of the distinguishing features of the projects

Halo Amarok

version control system SVN git
wiki MW, SMW and Halo MW
bug tracker Bugzilla Bugzilla
build server Hudson Hudson
test case management TestLink simple wiki page

Table 4.14: Comparison of some of the tools used by the projects

4.3. Comparison and conclusion 55

Figure 4.13: QAfOSS Model for Halo (top) and Amarok (bottom) based on [Ott10] (1:
Requirement Management 2: Requirement Review 3: Process Documen-
tation 4: Product Documentation 5: Project Organisation 6: Project Co-
ordination 7: Team Communication 8: Knowledge Capturing 9: Team
Education 10: Infrastructure Management 11: Design Control 12: De-
velopment Control (Coding) 13: Continuous Code Quality Control 14:
Code Review/Inspection 15: Peer Review 16: Defect Management 17:
Unit, Integration and Regression Testing 18: Release Management 19:
Build and Release Check 20: Quality Management 21: Software Quality
Assurance 22: Process Change Management 23: Defect Prevention)

56 4. Analysis of the Current Development Processes

“Another world is not only possible, she is on her way. On a quiet

day, I can hear her breathing.”

Arundhati Roy

5
Design of an Improved Development

Process

In this chapter the new proposed development process for Halo and Amarok will

be introduced. The focus of the design is on improving the involvement of all

stakeholders in the development process and the decisions and actions related to it

by making them more transparent and collaborative. This involves a concentration

on or change to a bottom-up approach instead of top-down processes.

5.1 Requirements, expectations and constraints

Both projects have a number of requirements, expectations and constraints for

the new processes and tools. They are roughly ordered by importance.

Building trust by transparency First and foremost the new processes need to build

trust by transparency. According to Grams, one of the reasons why an Open

Source projects fails is a lack of trust. He says: “Collaboration works better when

you trust the people with whom you are collaborating. Transparency is more

believable when you trust those who are opening up to you. And it is much easier

for the best ideas to win when there is a base level of trust in the community that

everyone is competent and has the best interests of the project at heart.” [Gra10b]

Blizzard also summarizes this nicely as ”Surprise is the opposite of engagement.”

[Gra10a] This is especially important for Halo.

58 5. Design of an Improved Development Process

People gaming the system are likely not going to be a large problem at this point.

Halo does not have a dedicated enough community for this and Amarok’s is big

enough to spot these cases and fix them.

Allowing quick overview and contributions The new processes need to allow quick

contributions and give an easily accessible overview of the current development

status – a dashboard-like overview. They need to facilitate moving to the centre of

the community from the outskirts (Figure 4.1). They need to be low maintenance

and easy to learn and use for newcomers. The barrier to entry they pose needs to

be small.

Avoiding “cookie licking” The most important thing to be avoided is probably

“cookie licking” [N+]. It describes a community anti-pattern in which someone

claims a given task with the best of intentions and then does not have the time,

motivation or skill set to complete it. Others who might have had the skills, time

and motivation to do it in the meantime will refrain so as to not interfere with

the work of the cookie-licker. The result is that the work does not get done or is

delayed unnecessarily.

Not wasting time It is also important that the new processes do not require more

time commitment from contributors than the current processes (without very good

justification), as that would greatly hinder new process adoption in both projects.

Using Free Software For Amarok it is very important that any newly introduced

tool is Free Software. This is a common requirement among Free Software projects

[HS02]. This, and the will to lower the barrier to entry, leads to a number of de-

facto standard tools which makes it easier to contribute to other projects once the

contributor is familiar with them, e.g., Bugzilla, Apache Subversion (SVN), git,

Mailman, MediaWiki (MW) and Internet Relay Chat (IRC).

Setting expectations correctly To the user it needs to be clear that his suggestions

in these new processes are just suggestions. The teams will try to accommodate

them but there are many potential reasons for not being able or willing to follow

what the user community suggests. These include a lack of time, skills and man-

power as well as technical problems and interference with other features or the

vision of the project. The expectations need to be set correctly here.

Changing mindsets The most difficult thing to realize is likely the change of mind-

set that is needed in companies like ontoprise when working on Free Software

projects. They fall into the Tom Sawyer trap too easily: “If you are looking to

ideas like open source or social media as simple means to get what you want for

5.2. Communication and coordination in distributed teams 59

your company, it’s time to rethink your community strategy. [. . .] Rather than

asking how they can paint your fence for you, ask yourself how can we all paint

everyone’s fences together? You’ll change everything if you take yourself out of

the center of the community and instead become a humble contributor to a com-

munity where everyone, including you, will benefit from your efforts.” [Gra09a]

More transparency in all processes and the interaction with community members

it brings will hopefully facilitate this mindset shift.

5.2 Communication and coordination in distributed teams

There are a number of tools and processes that can make communicating and

coordinating in a distributed team easier. Those that will have a large impact on

Halo and Amarok are investigated here.

5.2.1 Team and task awareness

Both projects struggle with team and task awareness. As seen in the analysis, it is

often hard to answer the following questions: What is everyone working on? What

are their current problems? Does he have time to help with an urgent problem?

What needs to be done before the next release?

To create this task and team awareness a team and a release dashboard are pro-

posed. Both dashboards aggregate data from different sources: repository, bug

tracker, build server, feature request tracker, calendar, and more.

On the team dashboard everyone can quickly and easily see important information

regarding the team and project. It should contain the following information:

∙ task count for each contributor

∙ bug count for each contributor

∙ feature request count for each contributor

∙ local time for each contributor

∙ build status, failing test cases

∙ countdown for the next releases

∙ calendar with other important dates

∙ links to important other sites (e.g., a list of release blocker bugs, checklists)

∙ accomplishments (X bugs and features already completed, Y still open for

this release)

60 5. Design of an Improved Development Process

Figure 5.1: Mock-up of the proposed team dashboard

∙ ticker of user feedback (e.g., Twitter, identi.ca)

A mock-up can be seen in Figure 5.1.

The release dashboard gives an overview of the release currently being worked on.

It shows the latest commits to the repository and the remaining bugs and feature

request. A mock-up can be seen in Figure 5.2.

5.2.2 Release schedule

The release schedule should be public so that all involved parties can take these

dates into consideration for their planning. There are two things that make this

complicated, however. First, a lot of Free Software projects (including Halo)

do not have a publicly communicated schedule. Creating one gives a rhythm, a

heartbeat, to the project that everyone in the ecosystem can align with as needed.

This heartbeat is also what keeps everyone engaged and involved. Importantly,

it also communicates to the outside world that the project is alive. The other

problem is the fear of a wrong schedule. It is no shame to adjust the schedule

when one has new and relevant information or requirements that is best addressed

by a schedule change. If a team can never meet the schedule they set themselves,

5.2. Communication and coordination in distributed teams 61

Figure 5.2: Mock-up of the proposed release dashboard

it is likely time to look for the fix in the underlying processes that are the reason

for the constant delay or wrong schedule estimation.

It is therefore proposed to create a release calendar. It should be easy to maintain

and a reasonable number of people (at least three) should have edit access to it to

ensure it is kept up-to-date. Possible options here include a calendar in the wiki,

a shared Google calendar, or a simple webpage on the project’s website.

Amarok already has a Google calendar that is shared with the team and contains

every release milestone. This will be used and made more prominently and publicly

available. Halo so far only has a wiki page which lists the approximate date of the

next release. A calendar in the wiki will be introduced here as this is the option

that is easy and most likely to be kept up-to-date by that team.

5.2.3 Code ownership

In both projects code ownership1 is a problem. It is a balancing act between

making it exclusive and very explicit on the one hand (Halo mostly follows this

model) and not having it at all on the other hand (Amarok mostly follows this

model). The problem with exclusive and explicit code ownership is that it discour-

ages or prevents others from contributing. In the end it is another “cookie licking”

1Someone is the maintainer of a part of the code base and feels responsible for it.

62 5. Design of an Improved Development Process

problem. The advantage of it is that there is always a person responsible for a

given part of the code base that can be contacted with questions and problems.

Logically, the disadvantage of having no explicit code ownership is the lack of the

advantages that code ownership provides. The benefit of not having explicit code

ownership is that it allows anyone to fill this vacuum. As a result, the goal is to

make it explicit but not overly so, and not exclusive. The same applies to feature

requests and bug reports.

The solution for this could be twofold. On the one hand it could be made clear

that wherever a notion of ownership is publicly communicated, it is done so with

a timer. A feature request could be assigned to a developer for three weeks, and

if he does not work on it during this time he loses his exclusivity and fulfilling

the request becomes a free-for-all. The other part would be an activity indicator,

showing if the developer is currently actively participating in the project based on

activity on mailing lists, the bug tracker, the source code repository and the IRC

channel(s), among other things. The activity indicator will be discussed further

in Section 5.5.

For Amarok a maintainer file will be introduced into the repository. It will have

a short notice saying that the assignees of the particular area in Bugzilla is also

the maintainer of that code and mention that this is not exclusive. For Halo the

existing wiki page listing maintainers will be amended with a message making it

clearer that while these people are the maintainers they are not the sole owners

of that code.

5.2.4 Checklists

For new contributors it is often not easy to see what is required from them in their

first commits.

To help them, and to maintain consistency among long-term contributors, a num-

ber of checklists are introduced. These checklists are not intrusive and the con-

tributor can go through them on his own.

One such checklist is for the current commit. Another can be applied to feature

requests or review requests. There are a few important questions these checklists

should ask. For the commit checklist these could be: Does it fit the vision of the

project or at least not work against it? Does it conform to the project’s coding

style? Is there a bug or feature request or test case associated with this? Does it

introduce new dependencies? Does it add new strings? For a feature request or

review request the questions could be: Does it fit the vision of the project or at

least not work against it? Does it conform to the project’s coding style? Who is

going to maintain the code?

For Halo these checklists will be made available in the developer section of the

public wiki. Amarok’s will be placed in the HACKING directory in git which

already holds other similar documents.

5.2. Communication and coordination in distributed teams 63

5.2.5 Building trust through engagement

Building trust is essential for collaborative work as laid out in Section 5.1, espe-

cially for Halo. One way to build this trust is by enabling face-to-face meetings of

distributed teams. This only works up to a certain team size, as it might be too

costly for a project with larger teams and does not necessarily engage people at

the outskirts of the contributor circle (Figure 4.1). Other, additional ways have

to be used.

A lot of tools can be used to engage with the community at large and show the

more human side behind a Free Software project like Halo and Amarok. The most

widespread tools are likely project planets2 and social media tools (e.g., identi.ca,

Twitter, Facebook), where team members can engage with other projects, users

and themselves. This engagement builds social capital. In volunteer-driven projects

there seems to be more willingness by developers to engage with users directly than

in commercial projects. Part of this might be that it takes time and mental ca-

pacity that they do not have or that they do not deem it important enough. The

other important factor is fear of consequences from management. In those cases,

management needs to make a case for community engagement both by preferably

engaging with the community in some form themselves and by making sure that

employees see it as part of their job requirements. Social media guidelines can

help take away some of the fear as well by making it explicit what the company

does and does not deem acceptable. Being involved in social media channels has

three very important benefits: i) the direct connection from the team to the user

and the ability to interact with them; ii) the direct connection from the user to the

team allowing users to express feedback that goes beyond bug reports, support

tickets and feature requests; and iii) the direct connection between users without

interference or the need for guidance from the core team. It is important to allow

each of these connections in collaborative and transparent teams.

Amarok is already using all of the above-mentioned tools. Halo uses them only

partially and wider use of them will be encouraged by integrating it into the team

dashboard.

One of the biggest sources for non-transparency (and as a result, mistrust) is

meetings. Too often they happen either face-to-face or via telephone. Both are

notoriously bad for non-participants unless proper meeting minutes are taken and

non-participants can provide their input beforehand and can still have influence

on any decisions taken in these meetings afterwards.

To approach the first problem, text-based communication media like IRC, Skype

chat and Jabber have proven useful. Participants are informed at the beginning

of the meeting that a log will be made available either publicly or to a number

of selected people. Decisions and conclusions of the meeting then become much

more transparent to someone who did not take part. For important and non-urgent

2Blog aggregators that produce a website containing all relevant blog entries by contributors
of the project

64 5. Design of an Improved Development Process

matters meetings should be avoided altogether. These discussions are often much

more suitable to a non-realtime communication medium like a mailing list.

Amarok already holds very few meetings. Most day-to-day operations are han-

dled on IRC and via the mailing lists. This should stay that way. Halo holds a

lot of regular phone conferences and meeting minutes are only published in the

internal wiki. To reach real transparency and collaboration with the wider com-

munity, these need to be transitioned. The first step would be to make meeting

minutes public to as great a degree as possible. However, for various reasons (e.g.,

confidentiality concerns) the likelihood of that happening is small.

5.2.6 Connecting commits

It is often hard to keep track of the information that is scattered across different

systems like bug trackers, mailing lists, repositories and patch review systems.

One way to connect the information in these systems are commit hooks. Modern

version control systems support the execution of scripts, called commit hooks,

upon each commit. This allows, for example, a bug or review request to be closed

or a notification to be sent by email. They are especially useful if history needs

to be reconstructed at some future point; if the commit is linked to a bug report,

it is easy to find the bug report and reopen it in case the commit needs to be

reverted because of regressions it introduced. If the committer wants to notify

someone of a commit, emailing them the commit and what it changed (a diff) can

be done. Table 5.1 lists a selection of the most useful keywords triggering such

scripts in KDE. The keyword is simply mentioned in the commit message with

the appropriate argument (e.g., “BUG 12345”). It is then parsed by the commit

hook and the appropriate action is executed.

Keyword Action

BUG close a bug and post the commit message and diff as a
comment

CCBUG post the commit message and diff as a comment to a bug
REVIEW close a review request
FEATURE close a feature request
CCMAIL send an email with the commit message and diff

Table 5.1: Useful actions that can be executed with a commit

5.3 Collaboratively working on a vision

The analysis in Chapter 4 has shown that both projects lack a clear and written-

down vision.

5.3. Collaboratively working on a vision 65

5.3.1 Creating and communicating a vision

The creation of a vision for a team is a delicate undertaking. It can be especially

troublesome in a volunteer team as it may bring up very different understandings

of what the vision is or should be; team members may find that their existing

contributions have been furthering different goals. At the same time it is needed

to focus resources and have a clear understanding of what the project is and where

it is going.

Three methods seem applicable towards create this vision. The first is an unstruc-

tured meeting of the whole team or a good representation of it. In this meeting

the team would try to formulate a vision. The second option is that the Halo

management team and Amarok committee sit down and formulate a vision for

their respective team. The third option is an adaptation of the process proposed

by Levin [Lev00] that was introduced in Chapter 3.

The first option has the risk of being too unguided and therefore not leading to a

good result in an acceptable time frame. The second option risks alienating a large

part of the team and thereby makes the resulting vision unlikely to succeed. The

process proposed by Levin is both transparent and collaborative. It will therefore

be used for the creation of the vision for Halo and Amarok. The 4-stage process

(becoming informed, visiting the future and recording the experience, creating the

story, deploying the vision) will be applied with modifications.

Each of the four stages in Levin’s approach is associated with a number of ques-

tions. Since they are very focused on companies, they need to be adapted for Free

Software projects. Their focus has been moved from a commercial company with

employees to a Free Software project with contributors. Stages 2 and 3 have been

merged to simplify the process. The adapted questions for stage 1 (the present)

are:

∙ What is happening in the world external to our project that may impact

our work?

∙ What trends are occurring that may affect the needs, expectations, and

desires of key stakeholders (e.g., contributors, employees, upstream3, down-

stream4, etc.)

∙ What are other projects (within and outside our industry) doing or consid-

ering doing to prepare themselves for the future?

∙ What are the core values and beliefs for how contributions should be done

that will not be compromised?

For stages 2 and 3 (the future):

3The teams providing the software a given program depends on or uses
4The teams using or depending on a given program

66 5. Design of an Improved Development Process

∙ What is our project’s reputation? What is it known for?

∙ What do competitors and coopetition respect and envy the most?

∙ How and where are contributors/employees performing work and interacting

with users?

∙ What is the user’s experience?

∙ What major contributions have been made to the communities contributed

to?

∙ What are contributors/employees saying to their closest friends and family

about what it is like to contribute to our project?

∙ What new ideas, businesses or ventures have been pursued?

∙ What is going on in the marketplace?

∙ How are contributors/employees interacting with users? How are services

being provided?

∙ What is the mood of the team?

∙ What are contributors/employees, users and other stakeholders experiencing

and feeling?

And for stage 4 (the evaluation):

∙ What specific images or feelings emerged for you as you listened/read it?

∙ What key messages does it convey to you?

∙ What needs further clarification, explanation or elaboration?

∙ What, if anything, is missing from it that you believe is important to include?

∙ What do we need to do to translate this vision into action and make it a

reality for our organization?

The questions for the first three stages are made available to the team in a shared

space. Everyone is encouraged to add their answers and ideas. After a previously

announced point in time, (some) team members come together to evaluate the

results and decide which of them are useful/needed for the vision. Some key

points should emerge from which a draft of a vision can be formulated. This draft

should then be refined with the wider community via a mailing list discussion,

collecting input on a wiki page, or some similar means. The questions of stage

four can be used for this and the evaluation. Once a vision is agreed upon, it

should be communicated on the project’s website, in quarterly foundation reports

or other appropriate locations.

For Amarok and Halo, the vision creation will be done using a simple wiki page

that holds the questions and that is open to editing by the whole team.

5.4. Collaboratively creating a roadmap 67

5.3.2 Collecting updates for a vision

Projects change and because of that their vision is subject to change. In order

to stay relevant, the vision needs to adapt to these changes. A way to provide

input for changes therefore needs to be available. The proposed updates need to

be checked regularly for inclusion in the vision.

Proposals for updates can be put forward on a mailing list, a wiki page or during

regular meetings.

Proposals on a mailing list might be forgotten when the time comes to review the

vision. If they are collected during regular meetings they are likely to be forgotten

as well by the time it comes to review them. Therefore, for Halo and Amarok the

input for updates of the vision will be collected on the wiki on the associated

discussion page for the vision. Review will happen annually.

5.4 Collaboratively creating a roadmap

The analysis showed that both projects are lacking a public roadmap and a clear

way to influence the direction of the project. A complete and well-maintained

roadmap helps everyone involved in the project – from the beginning (receiving

input and help), through the middle (coding) and all the way to the end (writing

release notes). In a transparent and open project everyone should be able to

contribute to the roadmap, be it in the form of ideas, opinion, advice or code.

However, that does not mean that everyone can change the roadmap at will. A

process is needed that allows easy contributions as well as clear guidelines detailing

how each step can be influenced. For this thesis we will concentrate on feature

roadmaps and will not include bugs.

5.4.1 Life cycle of a feature request

A feature request can be in different states. It has a life cycle from the point it is

written down to the point where it is either implemented or discarded.

Table 5.2 lists the possible states a feature request can be in and Figure 5.3 shows

the possible transitions between each of them.

These states will be used during the implementation of the feature request system

for both projects.

5.4.2 Communicating expectations around feature requests

Communicating expectations regarding feature requests is non-trivial. It needs to

be clear which of them are considered for inclusion in one of the next releases and

68 5. Design of an Improved Development Process

State Meaning

draft feature request is being written and not yet ready for review
needs re-
view

feature request is finished and can be reviewed

reviewed feature request is reviewed and waiting for someone to imple-
ment it

in progress feature request is being implemented
finished feature request has been implemented
discarded feature request has been reviewed but it was decided that it

should not be implemented

Table 5.2: Feature request states and their meaning

draft

needs review

reviewed

in progress

finished

discarded

done

ok

started

not ok

changed

work
stopped

additional
changes
needed

completed

not implementable

Figure 5.3: Feature request states and their transitions

which are not. Users should not be left waiting to see a feature implemented that

the core team will never implement themselves or for which code contributions

will never be accepted. At the same time, it can be hard to predict the availability

of contributors and their ability to finish a given feature for the next release. This

needs to be clearly communicated.

A classification of feature requests into categories P1 to P5 based on their priority

is proposed. Table 5.3 shows a possible mapping of feature request priorities that

clearly communicates expectations to users and potential contributors.

5.4. Collaboratively creating a roadmap 69

Priority Meaning

P1 will be implemented by the core team
P2 will potentially be implemented by the core team
P3 will not be implemented by the core team but patches will be

happily accepted
P4 undecided or disputed
P5 will not be implemented and patches will likely not be accepted

into the main repository

Table 5.3: Feature request priorities and their meaning

This mapping will be used during the implementation of the feature request system

for both projects.

5.4.3 Scope and difficulty of feature requests

Feature requests can have different scopes and difficulties. It is hard for a new

contributor to assess scope and difficulty of a given feature request in a code base

that is new to him.

Table 5.4 proposes a classification that makes assessment easier. It allows quick

judgement of the feature request, since a low number indicates a task with smaller

scope and lower difficulty while a high score indicates a broad scope and higher

difficulty.

XXXXXXXXXXXXScope
Difficulty

easy medium hard

small 1 3 6
medium 2 5 8
large 4 7 9

Table 5.4: Feature request classification by scope and difficulty

This classification will be used during the implementation of the feature request

system for both projects.

5.4.4 Claiming and assigning feature requests

It needs to be possible to claim and assign proposed feature requests.

Each feature request should have a creator, driver and assignee. They can but do

not have to be the same person. The creator is the person that created the feature

request, the driver is responsible for bringing it to completion (e.g., finding the

right developer, collecting feedback) and the assignee is the person implementing

the feature request. To avoid“cookie licking”it should be possible to automatically

70 5. Design of an Improved Development Process

expire this to allow another contributor to step up. This will be done by using the

number given in Table 5.4 as the number of weeks the feature request is marked

as claimed since the last update.

It has to be clear how to go about getting involved with each of the roadmap’s

items. This could be done by: emailing the assignee or driver; contacting the

team via their mailing list, forum or IRC channel; or even leaving a comment on

the proposal page. The implementation depends on the team’s preferred means

of communication.

For Halo and Amarok, communication is supposed to happen on the talk page of

the feature request. If there is no reply to that after a reasonable amount of time

the driver and assignee of the feature request should be contacted by email.

5.4.5 Feature request page and overview

Based on the previous discussion, a feature page is needed. It should contain all

of the relevant information for a feature request.

A mock-up for such a feature page can be seen in Figure 5.4. The status infor-

mation includes the responsible people/teams, targeted release, how much of the

feature is completed, scope/difficulty, priority and when the page was last up-

dated. The extended information section lists more detailed information, such as

the rationale for the request, use-cases, mock-ups, associated discussions (mailing

list and forum), bug reports and repository branches. In the discussion section,

people should be able to express their opinion/support and to provide input on

the feature request.

For an easy overview a roadmap page is needed that lists all of the feature requests

currently being worked on or under consideration.

A mock-up of the roadmap page can be found in Figure 5.5. It lists the release

currently being worked on first, then the next release and then everything that is

planned for one of the later releases. At the end, the roadmaps of past releases

are displayed to visualize the progress the team has made and keep a record for

future reference. Figure 5.6 shows the details of the roadmap page of the release

currently being worked on.

5.5 Quality Assurance

The analysis of both projects has shown that they are having problems with

quality assurance. We have to accept the fact that most software has bugs. The

power of Free Software lies in the large audience that can help find and fix them.

There are two important reasons why code that reaches the user still has bugs: i)

it was not tested by a large enough audience to find them (mainly a problem for

5.5. Quality Assurance 71

Figure 5.4: Mock-up of the proposed feature page

Figure 5.5: Mock-up of the proposed roadmap page

Halo); and ii) the bugs were found but no-one had the resources (e.g., time, skills,

motivation) necessary to fix them, or the existence of the bugs was not brought to

the attention of the appropriate person capable of fixing them (mainly a problem

for Amarok).

72 5. Design of an Improved Development Process

Figure 5.6: Mock-up of the current release section of the proposed roadmap page

5.5.1 Encouraging testing by a large group

To address Halo’s problem, where code is not tested by enough people before a

release, a number of measures can be taken.

A clear feature freeze and a schedule for test-releases for public testing needs to be

created, communicated and followed. If the development branch starts to stabilize

at certain predictable times, interested users will come and test it.

A list of milestones for a release schedule that have proven successful is outlined

in Table 5.5. Amarok is already using this system and Halo is slowly transitioning

to it with the introduction of public testing releases.

Milestone Meaning/intended audience

technology
preview

showcase, likely very unstable

alpha for very early testers, likely contains a lot of bugs
beta for average testers, likely still contains a significant amount

of bugs
release can-
didate

for late testers, should only contain very few bugs

final production quality for users that need stability

Table 5.5: Release milestones and their idealized meaning and intended audience

The users already willing to help with stabilizing the code-base need to be sup-

ported in their efforts.

It is a good idea to make test cases publicly accessible for testers and allow them

to indicate which of the test cases they executed and what the results were.

5.5.2 Making problematic areas more visible

To address Amarok’s problem, where areas of the code-base are being abandoned

and this fact is not being noticed, the previously mentioned activity indicator

(Figure 5.7) can be used.

The activity indicator is a colour-coded slider that shows how active a contributor

is. This would largely simplify identification of unmaintained areas of the code-

base and could help automate this process. Once it is clear that a contributor has

5.6. Building blocks 73

Figure 5.7: Mock-up of proposed activity indicator for a very active (left) and moder-
ately active (right) person

not been active for two weeks, it is reasonable to assume that someone else needs

to step in.

The value displayed by the activity indicator is based on a contributor’s last IRC

login, emails to mailing lists, forum posts, comments in bug reports, commits,

wiki edits and blog entries. It also takes into account vacations or time-outs that

the contributor himself indicates.

The activity indicator will not be implemented in this thesis because the large

amount of diverse sources that would need to be taken into account are outside of

its scope. It would however be a valuable addition to the tool set of Free Software

projects and is therefore proposed for future work in this area.

The other thing that improves the situation is to regularly bring important issues

to the attention of the team.

Regular updates on the quality status can be performed by periodic automatic or

non-automatic emails, dashboards or shared bug queries. Useful information on

a dashboard includes the build status of the current development branch and the

number of bug reports considered critical. For regular push-updates on the quality

status, it is important to find a balance between alerting the team fast enough

(and with enough accompanying information) about critical issues and notifying

them too often to the point that they begin ignoring these updates.

Both Amarok and Halo will use regular automatic notifications by email since this

is the way it is most likely to be noticed. The notifications will be sent once every

week by Bugzilla to the respective developer mailing list.

5.6 Building blocks

The proposed tools and processes provide the building blocks for a development

process that is both transparent and collaborative. Figure 5.8 shows how they

relate to each other.

74 5. Design of an Improved Development Process

Vision
Roadmap and

schedule
Task and team

awareness Engagement

Supporting tools

Activity indicator

Commit hooks

Dashboards

Templates/checklists

Collaborative and transparent Free Software development

Figure 5.8: Building blocks (lines) and grouping (dotted lines) of collaborative and
transparent Free Software development

“They always say time changes things, but you actually have to

change them yourself.”

Andy Warhol

6
Implementation of an Improved

Development Process

This chapter explains the concrete implementation of the design proposed in Chap-

ter 5 and their application in Halo and Amarok. Some parts are only described

for one of the projects where they are identical for both of them. Other parts are

implemented for both projects to show how the solution looks like in a pure Me-

diaWiki (MW) environment and in a system using Semantic MediaWiki (SMW)

and Halo.

6.1 Roll-out scenario

The building blocks outlined in the previous chapter are largely independent of one

another. Each of them has therefore been introduced to the team separately to see

how they are accepted, ease the transition and see where they need adjustments.

Where applicable they have first been deployed for the Amarok and then Halo

team.

6.2 Communication and coordination in distributed teams

A number of tools and processes have been implemented, augmented or made

more visible to improve the communication and collaboration in both teams.

76 6. Implementation of an Improved Development Process

6.2.1 Team dashboard

The team dashboard was implemented for Halo. It contains a table with the

number of bugs, task and feature request for each team member, the current

build status, the bug status of the current release and feedback from social media

websites.

To create the table listing open bugs, tasks and feature requests the wiki is first

queried for each ontoprise employee1. Then Bugzilla is queried via a web service

for the open entries for each of the employees. A table is created with a row

for each result of the ask query. The mark-up for this is shown in Listing C.1.

The template of each of those rows can be seen in Listing C.2 (without links)

and Listing C.3 (with links). {{{1}}} in the template is replaced by the result

of the ask query. This can either be “User:accountname”2 or “accountname”. For

the web service queries the namespace must be removed, which is done in “Re-

move user namespace” (Listing C.4) where “User:” is replaced with an empty

string if the string it was given contains it. In “BugzillaQuery” the actual query

to Bugzilla is executed. It is called with two arguments: the type of report (bug,

task, feature request) and the account name of the person in question. {{{1}}}
and {{{2}}} in Listing C.5 are then replaced by them respectively. The result of

all this is shown in Figure 6.1.

Figure 6.1: Team dashboard table for Halo

The build status is displayed using an Really Simple Syndication (RSS) feed as

the source. It is published by Hudson, the continuous integration server used for

Halo. Again a web service is used for that. Listing C.6 shows the web service call

and Figure 6.2 the result.

Figure 6.2: Build status results from Hudson for Halo

The bug status chart (Figure 6.3) is created using three web service calls to

Bugzilla which are then shown using a bar-chart result printer. It works as follows.

1Other criteria are of course also possible.
2“User” is the namespace of all user pages in the wiki.

6.2. Communication and coordination in distributed teams 77

First the number of open and closed bugs for the current development version as

well as their sum is queried via a Bugzilla web service. Listing C.8 shows an ex-

ample query. These results are stored in the wiki. In a second step these three

numbers are queried using an ask query and displayed using a bar-chart result

printer. Listing C.7 shows the query.

Figure 6.3: Bug chart on the team dashboard for Halo

The latest user feedback is gathered via an RSS feed from a Google real-time

search. It searches for “Halo SMW+” since each search term individually returns

few results relevant for the project, but rather returns results for the games Halo

and Super Mario World. The mark-up is the same as in Listing C.6 but with a

different URL.

6.2.2 Release dashboard

The release dashboard was implemented for Halo. It contains some general infor-

mation3, the latest commits, the bugs already closed and still open for the current

release and features for the current release.

The latest commits to Halo’s Apache Subversion (SVN) repository are shown

based on an RSS feed from websvn4. The mark-up is the same as in Listing C.6

but with a different URL. The result is shown in Figure 6.4.

The bugs are fetched via a web service call to Bugzilla and displayed in a table.

The mark-up is shown in Listing C.9 (open bugs) and Listing C.10 (closed bugs).

“CurrentVersionInBugzilla” is a template that only contains the release number

of the next release in Bugzilla and is updated every release for convenience and

maintainability.

3Version number and planned release date of next release, development stage, links to impor-
tant development resources

4Repository viewer to browse the content of an SVN repository via a website

78 6. Implementation of an Improved Development Process

Figure 6.4: Latest commits to Halo’s repository

Figure 6.5: Table of bugs for the current Halo release

Features that are tracked in Bugzilla (mainly feature requests from users) are

queried via a web service call similar to the one for the bugs table. The features

tracked in the wiki are queried using an ask query and shown with a table result

printer. The mark-up can be seen in Listing C.11 and the result in Figure 6.6.

Figure 6.6: Table of features tracked in the wiki for Halo

6.2.3 Release calendar

Amarok’s existing release calendar was placed more prominently on the main

website. Halo’s calendar is still being worked on for the next releases as the

release dates are not known yet. Once they are known they will be shown using

the Semantic Results Formats extension for SMW. It is able to show the result of

a query in the wiki in different output formats, among them a calendar.

6.2.4 Code ownership

A MAINTAINERS file has been added to Amarok’s git repository containing the

following text:

“Amarok does not have clear maintainers of any part of the codebase.

You are welcome to work on any part of it provided you coordinate

with others working in that part.

If you need to contact someone about a particular part it is best to con-

tact the developer mailing list at amarok-devel@kde.org or the assignee

of the corresponding component on http://bugs.kde.org directly.”

6.3. Collaboratively working on a vision 79

6.2.5 Checklists

Commit checklists were developed for both projects to help new contributors avoid

common mistakes in their first commits. Halo’s new checklist has been added to

the developer section of its wiki. Amarok’s new checklist has been added to a text

file in the HACKING directory in its git repository along with other similar files.

The checklists can be found in Chapter D.

6.2.6 Commit hooks

The existing commit hooks from KDE for closing bugs and emailing commits are

going to be used for Halo as well. However they still need to be set up by the

responsible system administrator. They are available in KDE’s SVN repository.

6.3 Collaboratively working on a vision

For the vision creation in Amarok a wiki page was created with the questions of

stage 1 to 3 in Section 5.3. It was seeded with initial thoughts for the first three

questions to encourage participation. Then an email was sent to the two team lists

asking contributors to participate in the vision creation process by adding their

thoughts on each of those questions within one week. After that, a structured

meeting on Internet Relay Chat (IRC) was scheduled to go through each of the

questions again and discuss the ideas and add important points that were missing

so far. This meeting was strictly limited to a length of two hours which helped

tremendously to keep it on track. After the meeting the wiki page was updated

with the results and three people created an initial draft of the vision. It was sent

to the mailing list to receive feedback. After minor edits it was accepted as the

vision for Amarok:

“The Amarok team strives to develop a free and open music player

that is innovative and powerful, yet easy to use. Amarok helps redis-

cover music by giving access to a vast amount of different music sources

and related information. In a world where music and computing are

everywhere, Amarok aims to provide the best music listening expe-

rience anywhere, anytime. The Amarok team promotes free culture.

Amarok makes people happy.”

It has been posted to a wiki page and a link to it was added to the main website

of the project. A note pointing to the discussion page of the vision page has been

added to encourage update proposals for the vision.

The same process was started for Halo but failed to produce a tangible result so far

because people did not participate in the first step, i.e., answering the questions

in the wiki. Possible reasons for this are a lack of time or the fear that their ideas

might not align with those of the management.

80 6. Implementation of an Improved Development Process

6.4 Collaboratively creating a roadmap

Two feature tracking systems have been implemented – a simple version for

Amarok and a more elaborate version for Halo.

Amarok’s version is a simple wiki text template that can be used in a new page

for each new feature. Figure 6.7 shows an example feature page using it. The wiki

mark-up for it can be found in Listing C.12. Listing C.13 shows an example of

how it will be used in a wiki page. These features are then aggregated on a wiki

page sorted into four categories (next release, some future release, unsorted, old

releases).

Figure 6.7: Example of a wiki page for one feature for Amarok

An example of Halo’s feature tracking system can be seen in Figure 6.8. It is built

using the MW extension Semantic Forms. Two things are necessary to build the

system, a form and a template. The form is used to create and edit the feature

pages. It is shown in Figure 6.9. The mark-up of the form is shown in Listing C.15.

The information entered via the form is then saved on the wiki page as a template

call with the entered data as parameters. The mark-up of the template can be

seen in Listing C.14.

6.5 Quality Assurance

Steps have been taken to improve the quality of both programs.

6.5. Quality Assurance 81

Figure 6.8: Example of a wiki page for one feature for Halo

Figure 6.9: Form to create and modify feature tracking pages for Halo

6.5.1 Encouraging testing by a large group

For Amarok a test checklist was developed by a student mentored by the author

as part of Google’s Code-in contest. It guides the tester through all menus and

functionality in Amarok. He is then encouraged to file bug reports for any prob-

lems he finds. The starting point when developing this checklist was a list of all

menu and context menu entries of the program.

For Halo a second and improved public testing contest was started that built on the

lessons that were learned during the first one. This includes fixing problems caused

by bugs in the used tools like the deployment framework, clarifying instructions for

participants and making patches to MW and SMW optional to lower the barrier

to entry.

82 6. Implementation of an Improved Development Process

6.5.2 Making problematic areas more visible

To make problematic areas more visible to the whole team in Amarok Bugzilla

whines were set up. They notify the team weekly about bugs marked as release

blockers via an email sent to the developer list. The email content is shown in

Figure 6.10.

Figure 6.10: Weekly reminder about bugs that block an Amarok release

“Your mother was right. It’s better to share.”

The Red Hat Story

7
Evaluation

In this chapter the tools and processes implemented in Chapter 6 are evaluated.

The evaluation was done to answer two main questions:

1. Are the new tools and processes improving collaboration in a Free Software

project?

2. Are the new tools and processes increasing transparency in a Free Software

project?

The evaluation focuses on subjective rather than objective indicators because they

are the more appropriate indicators for the long-term adaptability of the new tools

and processes by both teams.

7.1 Survey

A survey was sent to 10 people in each project. For Amarok the survey was

sent to everyone who took part in the initial interviews. For Halo the survey

was sent to 9 of the 10 people who took part in the initial interviews1 and one

additional developer. At the end of the survey period 8 replies were recorded for

Halo and 7 for Amarok. Most questions in the survey had to be answered on an

ordinal scale from 1 (not at all) to 5 (a lot/absolutely) and the rest in free-text

1One of them left the Halo team in the meantime and could not be reached for the evaluation.

84 7. Evaluation

fields. The answers were collected via an anonymous online survey to minimize

the influence of the personal relationship between the author and the interviewees

on the answers. The survey questions can be found in Chapter E.

7.1.1 Communication and coordination in distributed teams

The commit checklists are considered helpful for new contributors (Figure 7.1).

However, the answers from the Halo team are not entirely positive. The average

score2 from the Halo team is 3.753, from the Amarok team 4.14 and combined

3.93. A reason for the lower score from the Halo team might be the lack of

regular interaction with new external contributors and the problems they face. In

addition the comments indicate that some of the points in the checklist should

have explanations.

Figure 7.1: Result for evaluation question “Will the commit checklist help new con-
tributors?” (Halo, Amarok)

The team dashboard received a positive average score of 3.63 from the Halo team

for increasing transparency (Figure 7.2) but only an average score of 2.75 for im-

proving collaboration between contributors or contributors and users (Figure 7.3).

This was expected since the team dashboard’s main purpose is to increase trans-

parency. However, it is also intended to improve collaboration by creating team

awareness.

The release dashboard is considered suitable for increasing transparency by the

Halo team. It receives an average score of 3.5 (Figure 7.4). They seem to doubt its

ability to improve collaboration between contributors and contributors and users

(Figure 7.5). It received only an average score of 2.88 for both. The reason for

this might be that the release dashboard does not improve collaboration directly

2The average score is the sum of all scores for a question divided by the number of replies
for that question.

3Scores are rounded when necessary.

7.1. Survey 85

Figure 7.2: Result for evaluation question “Will the team dashboard increase trans-
parency?” (Halo)

Figure 7.3: Result for evaluation questions “Will the team dashboard improve collab-
oration between contributors/contributors and users?” (Halo)

but rather indirectly by increasing transparency and is therefore not considered

as something that improves collaboration by itself.

7.1.2 Collaboratively working on a vision

The vision creation for Amarok was a success. During the vision creation process

about 70 edits have been made by four people in the wiki. Eight people actively

took part in the Internet Relay Chat (IRC) meeting while a few others only fol-

lowed it. The team members seem to be very pleased with the resulting vision

statement and believe it will help the project make better decisions in its next

development steps (Figure 7.6, average score of 3.86). The process has already

lead to a few additional major decisions on the future direction of the project.

The replies in Figure 7.7 indicate that the new vision is going to help increase

transparency for users (average score of 3.57) and improve collaboration for con-

86 7. Evaluation

Figure 7.4: Result for evaluation question “Will the release dashboard increase trans-
parency?” (Halo)

Figure 7.5: Result for evaluation questions “Will the release dashboard improve col-
laboration between contributors/contributors and users?” (Halo)

tributors (average score of 3.43). The replies testify this vision creation process

can be used by other Free Software projects as well (Figure 7.8, average score of

4.43) and is considered transparent and collaborative (Figure 7.9, average score

of 4 and 4.43 respectively).

The Halo team was asked for reasons why the vision creation failed there so far.

The responses indicate a combination of reasons. These include a lack of time,

fear of being judged for the given responses in the initial stage, not being used

to having a voice in decisions like this and being discouraged by the open-ended

questions. This indicates that more support from management is needed both in

terms of time commitment as well as encouraging participation.

7.1. Survey 87

Figure 7.6: Result for evaluation question “Will the new vision help the project make
better decisions in its next development steps?” (Amarok)

Figure 7.7: Result for evaluation question “Will the new vision help increase trans-
parency in the project for users?” and “Will the new vision help improve
collaboration in the project for contributors?” (Amarok)

7.1.3 Collaboratively creating a roadmap

The new feature tracking form/template and roadmap received a very good av-

erage score of 4.07 for being easy to use (Figure 7.10). However, Halo’s system

based on Semantic Forms was rated higher (4.25) than Amarok’s template based

system (3.86).

Halo’s new feature tracking system received an average score of 3.5 for improving

collaboration, both between contributors as well as between contributors and users.

Amarok’s received an average score of 3.57 for improving collaboration between

contributors and 3.86 for improving collaboration between contributors and users

(Figure 7.11). The teams give it an average score of 3.125 (Halo) and 4 (Amarok)

for being able to increase transparency (Figure 7.12). Concerns were raised by the

Halo team that feature tracking already happens in Bugzilla and the internal wiki.

88 7. Evaluation

Figure 7.8: Result for evaluation question “Do you think the process of creating the
new vision can be used by other Free Software projects as well?” (Amarok)

Figure 7.9: Result for evaluation questions “Do you think the process of creating the
new vision was transparent/collaborative?” (Amarok)

The feature tracking in the internal wiki can hopefully be replaced with this more

transparent and public version in the future. Bugzilla should then only be used for

feature requests from users who do not intend to be part of the implementation

process of their requested feature.

The Halo teams seems divided when it comes to the question if other Free Soft-

ware projects might be interested in using this feature tracking system as well

(Figure 7.13). The reason for this might be the lack of exposure to other Free

Software projects and their needs. Their average score is 3.25. The Amarok

teams seems to think that the system is indeed of interest for other Free Software

projects and gives it an average score of 4.14.

7.2. Changes in the openness of the development processes 89

Figure 7.10: Result for evaluation question “Do you think the new feature tracking
form/template and roadmap are easy to use?” (Halo, Amarok)

Figure 7.11: Result for evaluation questions “Will the new feature tracking for-
m/template improve collaboration between contributors/contributors
and users?” (Halo, Amarok)

7.1.4 Quality Assurance

All measures to improve the quality situations have been considered very useful

(Figure 7.14). Weekly emails about release blockers have been considered most

useful before public testing and the testing checklist. They received average scores

of 4.29, 4.25 and 4.14 respectively. Public testing is considered very helpful because

it provides input from a range of people with very different use-cases, work-flows

and expectations.

7.2 Changes in the openness of the development processes

Significant parts of the release cycle of both projects have been made more trans-

parent and collaborative, in short more open, during the writing of this thesis.

90 7. Evaluation

Figure 7.12: Result for evaluation question “Will the new feature tracking form/tem-
plate and roadmap increase transparency?” (Halo, Amarok)

Figure 7.13: Result for evaluation question“Do you think other Free Software projects
might be interested in this too?” (Halo, Amarok)

Figure 7.15 and Figure 7.16 are the release cycle charts from Chapter 4 adapted

to show which stages became more open for each project.

7.2. Changes in the openness of the development processes 91

Figure 7.14: Result for evaluation questions “Do you consider the weekly emails from
Bugzilla to the developer mailing list about release blockers/the test-
ing checklist/the public testing useful for improving the QA situation?”
(Halo, Amarok)

feature design

feature development

quality assurance

final release

pre-final release

design document

more open

Figure 7.15: Changes in the openness of Halo’s release cycle

92 7. Evaluation

creation of release plan

feature design
and development

quality assurance

quality assurance

final release

pre-final release

feature and string freeze

more open

Figure 7.16: Changes in the openness of Amarok’s release cycle

“All is riddle, and the key to a riddle is another riddle.”

Ralph Waldo Emerson

8
Conclusions and Outlook

The work in this thesis has helped two Free Software projects make large parts of

their development process more transparent and collaborative. In addition, it has

helped the projects focus on pertinent issues that they are facing; after the initial

interviews with participants, feedback was given to the author indicating that

the participants appreciated someone asking important questions, even if those

questions are not always easy or pleasant. It forced the participants to think

about the future: where they want the projects to end up and how to get there.

Hopefully, this work will be a significant stepping stone on that path.

Several tools and processes provided in this thesis can be adapted to other Free

Software projects as well, and used to make their development more transparent.

This includes ways to create a vision for a project, tools to improve collaboration

in a team, methods and tools to improve the quality of the project’s software

and improvements to the simple feature tracking and roadmap creation that are

bedrocks of Free Software development. Each of them is in line with how a Free

Software project functions.

In the future, the proposed tools and processes should be tested with other teams

and will be even more tightly integrated with projects’ existing infrastructures. In

addition, the proposed activity indicator should be implemented.

94 8. Conclusions and Outlook

Acknowledgements

I would like to thank the people that accompanied me along the way while I wrote

this thesis. There are many of them, but I would like to give special thanks to:

∙ Basil Ell for always asking the right questions and saving me from my own

enthusiasm when necessary

∙ the Halo team for making this thesis possible

∙ the Amarok team for running with my ideas and working on the next steps

already

96 8. Conclusions and Outlook

“Only work if you have the feeling, it could start a revolution.”

Joseph Heinrich Beuys

A
Release timelines

The following timelines show the public final releases of Halo and Amarok. Tech-

nology previews, alpha and beta releases as well as release candidates are not

included.

2008 2011∙ ∙
∙ Jan, 2009 1.4

∙ Mar, 2009 1.4.2

∙ Apr, 2009 1.4.3

∙ Jun, 2009 1.4.4

∙ Oct, 2009 1.4.5

∙ Feb, 2010 1.4.6

∙ May, 2010 1.5.0

∙ Aug, 2010 1.5.1

∙ Dec, 2010 1.5.2

Figure A.1: Halo timeline (release dates according to [Ont10])

98 A. Release timelines

2003 2010∙ ∙
∙ Nov, 2003 0.6-91

∙ Jan, 2004 0.8.2

∙ Mar, 2004 0.9

∙ Jun, 2004 1.0

∙ Jun, 2004 1.0.1

∙ Oct, 2004 1.1

∙ Nov, 2004 1.1.1

∙ Jan, 2005 1.2

∙ Jan, 2005 1.2.1

∙ Mar, 2005 1.2.2

∙ Mar, 2005 1.2.3

∙ May, 2005 switch from CVS to SVN

∙ Aug, 2005 1.3

∙ Sep, 2005 1.3.1

∙ Sep, 2005 1.3.2

∙ Oct, 2005 1.3.3

∙ Oct, 2005 1.3.4

∙ Nov, 2005 1.3.6

∙ Dec, 2005 1.3.7

∙ Jan, 2006 1.3.8

∙ Mar, 2006 1.3.9

∙ May, 2006 1.4.0

∙ Jul, 2006 1.4.1

∙ Aug, 2006 1.4.2

∙ Sep, 2006 1.4.3

∙ Oct, 2006 1.4.4

∙ Feb, 2007 1.4.5

∙ Jun, 2007 1.4.6

∙ Aug, 2007 1.4.7

∙ Dec, 2007 1.4.8

∙ Apr, 2008 1.4.9

∙ Aug, 2008 1.4.10

Figure A.2: Amarok 1 timeline (tagging dates according to [git10], source code man-
agement system switch according to [Rid05])

99

2007 2012∙ ∙
∙ Jan, 2008 1.80

∙ Aug, 2008 1.90

∙ Sep, 2008 1.92

∙ Oct, 2008 1.94

∙ Nov, 2008 1.98

∙ Dec, 2008 2.0

∙ Jan, 2009 2.0.1

∙ Mar, 2009 2.0.2

∙ May, 2009 2.1.0

∙ Jun, 2009 2.1.1

∙ Jul, 2009 switch from SVN to git

∙ Sep, 2009 2.2.0

∙ Nov, 2009 2.2.1

∙ Jan, 2010 2.2.2

∙ Mar, 2010 2.3.0

∙ May, 2010 2.3.1

∙ Sep, 2010 2.3.2

∙ Jan, 2011 2.4.0

Figure A.3: Amarok 2 timeline (tagging dates according to [git10], source code man-
agement system switch according to [Pin09])

100 A. Release timelines

“It seems like once people grow up, they have no idea what’s cool.”

Calvin (Calvin and Hobbes)

B
Interview questions

The following questions were asked during the interviews to capture the initial

state of the projects.

∙ For how long are you involved in the project?

∙ Why are you working on Amarok/Halo?

∙ Which parts of the development process are you involved in?

∙ Which tools do you use for your day to day work and how do you use them?

∙ What is good/bad about the tools you use?

∙ How do you decide which task to work on next?

∙ Who do you interact with usually and why?

∙ How do you interact with them?

∙ What are the areas that create most problems and confusion inside the core-

team?

∙ What works well inside the core-team?

∙ What are the areas that create most problems and confusion outside the

core-team?

∙ What works well outside the core-team?

102 B. Interview questions

∙ Where does the development process need to be improved?

∙ Which parts of the development process work well?

∙ Is there anything else you would like to add?

“Talk is cheap. Show me the code.”

Linus Torvalds

C
Mark-up

The following mark-up snippets are part of the implementation. They are provided

to illustrate how to replicate a similar system for another project.

1 {|

2 |-

3 ! Name

4 ! Tasks

5 ! Bugs

6 ! Feature requests

7 {{#ask: [[Category:Person]]

8 [[Affiliated with:: ontoprise GmbH]]

9 | ?Email address

10 | format=template

11 | template=Team dashboard row

12 | headers=hide

13 | link=none

14 | order=ascending

15 | merge=true

16 |}}

17 |}

Listing C.1: Mark-up for the team dashboard table showing task, bug and feature
request count for each team member

104 C. Mark-up

1 |-

2 | [[{{{1}}}|{{ Remove_user_namespace |{{{1}}}}}]]

3 | {{ BugzillaQuery|Task |{{ Remove_user_namespace |{{{1}}}}}}}

4 | {{ BugzillaQuery|Bug|{{ Remove_user_namespace |{{{1}}}}}}}

5 | {{ BugzillaQuery|Feature Request |{{ Remove_user_namespace

|{{{1}}}}}}}

Listing C.2: Template for the individual rows of the team dashboard table showing
task, bug and feature request count for each team member

1 |-

2 | [[{{{1}}}|{{ Remove_user_namespace |{{{1}}}}}]]

3 | [http :// smwforum.ontoprise.com/smwbugs/buglist.cgi?

emailassigned_to1 =1& query_format=advanced&bug_status=NEW&

bug_status=ASSIGNED&bug_status=REOPENED&cf_issuetype=Task&

email1 ={{{2}}}& emailtype1=exact {{ BugzillaQueryIndividual|Task

|{{ Remove_user_namespace |{{{1}}}}}}}]

4 | [http :// smwforum.ontoprise.com/smwbugs/buglist.cgi?

emailassigned_to1 =1& query_format=advanced&bug_status=NEW&

bug_status=ASSIGNED&bug_status=REOPENED&cf_issuetype=Bug&

email1 ={{{2}}}& emailtype1=exact {{ BugzillaQueryIndividual|Bug

|{{ Remove_user_namespace |{{{1}}}}}}}]

5 | [http :// smwforum.ontoprise.com/smwbugs/buglist.cgi?

emailassigned_to1 =1& query_format=advanced&bug_status=NEW&

bug_status=ASSIGNED&bug_status=REOPENED&cf_issuetype=Feature

%20 Request&email1 ={{{2}}}& emailtype1=exact {{

BugzillaQueryIndividual|Feature Request |{{

Remove_user_namespace |{{{1}}}}}}}]

Listing C.3: Template for the individual rows of the team dashboard table showing
task, bug and feature request count for each team member with links

1 {{# replace :{{{1}}}| User :|}}

Listing C.4: Parser function to remove the User namespace

1 {{#ws:BugzillaConnector

2 | componentName = *

3 | productName = *

4 | IssueType ={{{1}}}

5 | Assignee ={{{2}}}

6 | Status=NEW

7 | ?result.URL

8 | _format=count

9 }}

Listing C.5: Web service query for the team dashboard table

105

1 {{#ws:RSSFeed

2 | url = dailywikibuilds.ontoprise.com :8080/ job/smwhalo/rssAll

3 | ?result.title

4 | ?result.link

5 | _striptags

6 | _format=template

7 | _template=RSSFeedLinkList

8 | _limit =3

9 }}

Listing C.6: Web service query for the build status from Hudson

1 {{#ask:[[Development/Release_Status/Facts_for_reports]] [[

CountAllBugsForCurrentRelease ::+]][[

CountResolvedBugsForCurrentRelease ::+]] [[

CountOpenBugsForCurrentRelease ::+]]

2 | ?CountAllBugsForCurrentRelease=all bugs

3 | ?CountResolvedBugsForCurrentRelease=resolved

4 | ?CountOpenBugsForCurrentRelease=open

5 | format=ofc -bar

6 }}

Listing C.7: Query for the bug status chart of Halo

1 [[CountOpenBugsForCurrentRelease ::{{#ws:BugzillaConnector|

componentName = *

2 | productName = SemanticWiki

3 | IssueType= Bug

4 | Severity = blocker , critical , major , minor , normal , trivial ,

enhancement

5 | Status = UNCONFIRMED , REOPENED , NEW , ASSIGNED

6 | Milestone = {{ CurrentVersionInBugzilla }}

7 | ?result.Id

8 | _limit = 2000

9 | _format=count

10 }}]]

Listing C.8: Web service query for number of open bugs for the current Halo
development version

1 {{#ws:BugzillaConnector

2 | componentName = *

3 | productName = SemanticWiki

4 | Severity = blocker , critical , major

5 | Status = UNCONFIRMED , REOPENED , NEW , ASSIGNED

6 | Milestone = {{ CurrentVersionInBugzilla }}

7 | ?result.URL

8 | ?result.Severity

9 | ?result.Summary

10 | ?result.Priority

11 | ?result.Version

12 | ?result.Status

13 | _format=table

14 }}

Listing C.9: Web service query for open bugs for the current Halo release

106 C. Mark-up

1 {{#ws:BugzillaConnector

2 | componentName = *

3 | productName = SemanticWiki

4 | Severity = blocker , critical , major , minor , normal , trivial

5 | Status = RESOLVED

6 | Milestone = {{ CurrentVersionInBugzilla }}

7 | ?result.URL

8 | ?result.Severity

9 | ?result.Summary

10 | ?result.Priority

11 | ?result.Version

12 | _format=table

13 }}

Listing C.10: Web service query for closed bugs for the current Halo release

1 {{#ask: [[HasFeatureStatus ::in progress ||draft|| reviewed ||needs

review]]

2 | ?HasFeatureStatus = Status

3 | ?HasFeaturePriority = Priority

4 | ?HasFeatureScopeDifficulty = Scope/Difficulty

5 | ?HasTargetRelease = Target Release

6 | ?HasFeatureAssignee = Assignee

7 | format=table

8 | headers=show

9 | mainlabel=Feature

10 | link=all

11 | order=ascending

12 | source=tsc

13 | queryname=FeatureTracking

14 | merge=false

15 |}}

Listing C.11: Query for features tracked in the wiki for Halo

107

1 = {{ PAGENAME }} =

2

3 {| style=" float: right;" border ="1" cellpadding ="4" cellspacing

="0"

4 |+ ’’’Status information ’’’

5 |-

6 |’’’State:’’’ [[Feature_States |{{{ State }}}]]

7 |’’’Target release:’’’ {{{ TargetRelease }}}

8 |-

9 |’’’Percent completed:’’’ {{{ PercentCompleted }}}

10 |’’’Creator:’’’ [[User :{{{ Creator }}}|{{{ Creator }}}]]

11 |-

12 |’’’Scope/Difficulty:’’’ [[Feature_ScopeDifficulty |{{{

ScopeDifficulty }}}]]

13 |’’’Driver:’’’ [[User :{{{ Driver }}}|{{{ Driver }}}]]

14 |-

15 |’’’Priority:’’’ [[Feature_Priorities |{{{ Priority }}}]]

16 |’’’Assignee:’’’ [[User :{{{ Assignee }}}|{{{ Assignee }}}]]

17 |}

18

19 == Summary ==

20 {{{ Summary }}}

21

22 == Extended information and rationale ==

23 {{{ ExtendedInfoAndRationale }}}

24

25 == Related bug reports and branches ==

26 {{{ RelatedBugReportsAndBranches }}}

27

28 == Discussion ==

29 Please discuss this proposal on its discussion page.

Listing C.12: Wiki mark-up of Amarok’s feature tracking template

1 {{ Feature

2 |State=Draft

3 |PercentCompleted =0

4 |ScopeDifficulty =3

5 |Priority =2

6 |TargetRelease =2.4.6

7 |Creator=Nightrose

8 |Driver=Nightrose

9 |Assignee=Nightrose

10 |Summary=Please describe your feature here in a few sentences.

11 |ExtendedInfoAndRationale=Please explain your feature in more

detail here. Include a rationale , any similar work you know

about and any other information that might be helpful.

12 |RelatedBugReportsAndBranches=Please list any related bug reports

or code branches here.

13 }}

Listing C.13: Usage example of Amarok’s feature tracking template

108 C. Mark-up

1 = Feature tracking for {{ PAGENAME }} =

2 {| style="float: right;" border ="1" cellpadding ="4" cellspacing

="0"

3 |+ ’’’Status information ’’’

4 |-

5 |’’’[[Feature_Tracking_States|State:]]’’’ [[HasFeatureStatus ::{{{

State |}}}]]

6 |’’’Target release:’’’ [[HasTargetRelease ::{{{ TargetRelease |}}}]]

7 |-

8 |’’’Percent completed:’’’ [[HasPercentCompleted ::{{{

PercentCompleted |}}}]]

9 |’’’Creator:’’’ [[HasFeatureCreator ::{{{ Creator |}}}]]

10 |-

11 |’’’[[Feature_Tracking_ScopeDifficulty|Scope/Difficulty :]]’’’ [[

HasFeaturePriority ::{{{ Priority |}}}]]

12 |’’’Driver:’’’ [[HasFeatureDriver ::{{{ Driver |}}}]]

13 |-

14 |’’’[[Feature_Tracking_Priorities|Priority:]]’’’ [[

HasFeaturePriority ::{{{ Priority |}}}]]

15 |’’’Assignee:’’’ [[HasFeatureAssignee ::{{{ Assignee |}}}]]

16 |}

17

18 == Summary ==

19 {{{ Summary |}}}

20

21 == Extended information and rationale ==

22 {{{ ExtInformationRationale |}}}

23

24 == Related bug reports and branches ==

25 {{{ RelatedBugReportsBranches |}}}

26

27 == Discussion ==

28 {{ ShowComments|show=True}}

29

30 [[Category:Feature]]

Listing C.14: Wiki mark-up of Halo’s feature tracking template

109

1 {{{for template|Feature }}}

2 {| class=" formtable"

3 ! [[Feature Tracking ScopeDifficulty|Scope/difficulty :]]

4 | {{{ field|ScopeDifficulty|mandatory|default =0}}}

5 |-

6 ! [[Feature_Tracking_States|State :]]

7 | {{{ field|State|mandatory|default=draft }}}

8 |-

9 ! [[Feature Tracking Priorities|Priority :]]

10 | {{{ field|Priority|mandatory|default =4}}}

11 |-

12 ! Percent completed:

13 | {{{ field|PercentCompleted|mandatory|default =0}}}

14 |-

15 ! Target release:

16 | {{{ field|TargetRelease }}}

17 |-

18 ! Creator:

19 | {{{ field|Creator|mandatory|default=current user }}}

20 |-

21 ! Driver:

22 | {{{ field|Driver }}}

23 |-

24 ! Assignee:

25 | {{{ field|Assignee }}}

26 |-

27 ! Summary:

28 | {{{ field|Summary|input type=textarea|mandatory|default=Please

describe your feature here in a few sentences .}}}

29 |-

30 ! Extended information and rationale:

31 | {{{ field|ExtInformationRationale|input type=textarea|default=

Please explain your feature in more detail here. Include a

rationale , any similar work you know about and any other

information that might be helpful .}}}

32 |-

33 ! Related bug reports and branches:

34 | {{{ field|RelatedBugReportsBranches|input type=textarea|default=

Please list any related bug reports or code branches here .}}}

35 |}

36 {{{end template }}}

Listing C.15: Wiki mark-up of Halo’s feature tracking form

110 C. Mark-up

“Nothing great in the world has been accomplished without pas-

sion.”

Georg Wilhelm Friedrich Hegel

D
Checklists

Commit checklists were developed for both projects. They are supposed to help

new contributors avoid common mistakes in their first commits to a public repos-

itory.

D.1 Halo

For every commit:

∙ Does it conform to Halo’s coding style?

∙ Is there a feature request or bug report associated with it?

∙ Does it introduce new dependencies?

∙ Is the code documented where needed?

∙ Has it been added to the changelog?

∙ Does the diff contain only the changes you made and files you added/re-

moved? Does it contain all of them?

Additionally for commits introducing new features:

∙ Does it fit Halo’s vision or at least not work against it?

112 D. Checklists

∙ Who will maintain the code?

∙ Is Halo in feature freeze?

∙ Do existing regression tests still pass?

∙ Are new tests needed?

∙ Has it been reviewed by a usability person?

∙ Does user documentation exist?

D.2 Amarok

For every commit:

∙ Does it conform to Amarok’s coding style?

∙ Is there a feature request, bug report or review request associated with it?

(Please close them with the commit message.)

∙ Does it introduce new dependencies?

∙ Does it add new strings? Is Amarok in string freeze?

∙ Has it been added to the changelog?

∙ Does the diff contain only the changes you made and files you added/re-

moved? Does it contain all of them?

Additionally for commits introducing new features:

∙ Does it fit Amarok’s vision or at least not work against it?

∙ Who will maintain the code?

∙ Is Amarok in feature freeze?

∙ Do existing regression tests still pass?

∙ Are new tests needed?

∙ Has it been reviewed by a usability person?

∙ Does user documentation exist?

“The future is already here – it’s just not very evenly distributed.”

William Gibson

E
Evaluation questions

The following questions were used as the basis for the evaluation in Chapter 7.

Each of them was to be answered on a scale from 1 (not at all) to 5 (a lot/abso-

lutely) with the exception of the comment questions in each section and Halo’s

first question. These were free-text fields instead.

E.1 Halo

1. the new vision

(a) What do you think are the reasons the vision creation for Halo failed

so far? (No-one added answers to the questions in the wiki so far.)

2. communication and coordination

(a) Will the team dashboard increase transparency? (You can find it at

http://smwforum.ontoprise.com/smwforum/index.php/Development/Team

Dashboard.)

(b) Will the team dashboard improve collaboration between contributors?

(c) Will the team dashboard improve collaboration between contributors

and users?

(d) Will the release dashboard increase transparency? (You can find it at

http://smwforum.ontoprise.com/smwforum/index.php/Development/Release

Status.)

http://smwforum.ontoprise.com/smwforum/index.php/Development/Team_Dashboard
http://smwforum.ontoprise.com/smwforum/index.php/Development/Team_Dashboard
http://smwforum.ontoprise.com/smwforum/index.php/Development/Release_Status
http://smwforum.ontoprise.com/smwforum/index.php/Development/Release_Status

114 E. Evaluation questions

(e) Will the release dashboard improve collaboration between contributors?

(f) Will the release dashboard improve collaboration between contributors

and users?

(g) Will the commit checklist help new contributors? (You can find it at

http://smwforum.ontoprise.com/smwforum/index.php/Development/Commit

Checklist.)

(h) comments

3. roadmap and feature tracking (You can find the new feature tracking

form at http://smwforum.ontoprise.com/smwforum/index.php/Form:Feature

and an example at http://smwforum.ontoprise.com/smwforum/index.php/

Testfoo. These are primarily intended for contributors who want to commu-

nicate what they are working on.)

(a) Do you think the new feature tracking form is easy to use?

(b) Will the new feature tracking improves collaboration between contrib-

utors?

(c) Will the new feature tracking improves collaboration between contrib-

utors and users?

(d) Will the new feature tracking increase transparency?

(e) Do you think other Free Software projects might be interested in using

this too?

(f) comments

4. quality assurance

(a) Do you consider the public testing useful for improving the QA situa-

tion?

(b) comments

E.2 Amarok

1. the new vision (“The Amarok team strives to develop a free and open

music player that is innovative and powerful, yet easy to use. Amarok helps

rediscover music by giving access to a vast amount of different music sources

and related information. In a world where music and computing are every-

where, Amarok aims to provide the best music listening experience anywhere,

anytime. The Amarok team promotes free culture. Amarok makes people

happy.”)

(a) Will the new vision help the project make better decisions in its next

development steps?

http://smwforum.ontoprise.com/smwforum/index.php/Development/Commit_Checklist
http://smwforum.ontoprise.com/smwforum/index.php/Development/Commit_Checklist
http://smwforum.ontoprise.com/smwforum/index.php/Form:Feature
http://smwforum.ontoprise.com/smwforum/index.php/Testfoo
http://smwforum.ontoprise.com/smwforum/index.php/Testfoo

E.2. Amarok 115

(b) Will the new vision help increase transparency in the project for users?

(c) Will the new vision help improve collaboration in the project for con-

tributors?

(d) Do you think the process of creating the new vision can be used by other

Free Software projects as well? (This means answering the questions

on the wiki, having a meeting to discuss them and drafting a vision

statement after that in a smaller group. You can see the questions

again at http://amarok.kde.org/wiki/VisionCreation.)

(e) Do you think the process of creating the new vision was transparent?

(f) Do you think the process of creating the new vision was collaborative?

(g) comments

2. communication and coordination

(a) Will the new commit checklist help new contributors? (You can find it

at https://projects.kde.org/projects/extragear/multimedia/amarok/repository/

revisions/master/entry/HACKING/commitchecklist.txt.)

(b) comments

3. roadmap and feature tracking (You can find the new feature track-

ing template at http://amarok.kde.org/wiki/Template:Feature, an example

in action at http://amarok.kde.org/wiki/Proposals/Example and the new

roadmap page at http://amarok.kde.org/wiki/Proposals.)

(a) Do you think the new feature tracking template and roadmap are easy

to use?

(b) Will the new feature tracking template and roadmap improve collabo-

ration between contributors?

(c) Will the new feature tracking template and roadmap improve collabo-

ration between users and contributors?

(d) Will the new feature tracking template and roadmap increase transpar-

ency?

(e) Do you think other Free Software projects might be interested in using

this too?

(f) comments

4. quality assurance

(a) Do you consider the weekly emails from Bugzilla to the developer mail-

ing list about release blockers useful for improving the QA situation?

(b) Do you consider the testing checklist useful for improving the QA situ-

ation? (You can find it at http://amarok.kde.org/wiki/Development/

Testing.)

(c) comments

http://amarok.kde.org/wiki/VisionCreation
https://projects.kde.org/projects/extragear/multimedia/amarok/repository/revisions/master/entry/HACKING/commitchecklist.txt
https://projects.kde.org/projects/extragear/multimedia/amarok/repository/revisions/master/entry/HACKING/commitchecklist.txt
http://amarok.kde.org/wiki/Template:Feature
http://amarok.kde.org/wiki/Proposals/Example
http://amarok.kde.org/wiki/Proposals
http://amarok.kde.org/wiki/Development/Testing
http://amarok.kde.org/wiki/Development/Testing

116 E. Evaluation questions

Bibliography

[Abe07] Mark Aberdour. Achieving quality in open source software. IEEE

Software, 24:58–64, January 2007.

[Ale10] Alexa. Alexa top 500 global sites. online, November 2010.

[Bac09] Jono Bacon. The Art of Community - Building the New Age of Partic-

ipation. O’Reilly, 2009.

[BNST99] Terry Bollinger, Russell Nelson, Karsten M. Self, and Stephen J. Turn-

bull. Open-source methodology: Peering through the clutter. IEEE

Software, 16(4):8–11, 1999.

[Cho07] Mark Choate. Factors that improve wiki success. online, December

2007.

[CMM10] CMMI Product Team. Cmmi for development, version 1.3. Technical

report, Carnegie Mellon - Software Engineering Institute, November

2010.

[Com10] The Nielson Company. Mobile snapshot: Smartphones now 28% of u.s.

cellphone market. online, November 2010.

[Cow10] Jennifer Cownie. November 2010 web server survey. online, November

2010.

[Dav89] Fred R. David. How companies define their mission. Long Range Plan-

ning, 22(1):90 – 97, 1989.

[EC03] J. Alberto Espinosa and Erran Carmel. The impact of time separa-

tion on coordination in global software teams: a conceptual foundation.

Software Process: Improvement and Practice, 8:249 – 266, 2003.

[ESKH07] J. Espinosa, Sandra Slaughter, Robert Kraut, and James Herbsleb.

Team knowledge and coordination in geographically distributed soft-

ware development. J. Manage. Inf. Syst., 24:135–169, July 2007.

[Fed] Fedora Project. Features/policy/process - fedoraproject. online.

118 Bibliography

[FHL09] J. Fried, H.D. Hansson, and M. Linderman. Getting Real: the Smarter,

Faster, Easier Way to Build a Successful Web Application. 37signals,

2009.

[Fra10] Leonardo Franchi. Blurring the boundaries of music. In Akademy 2010.

KDE, July 2010.

[Gar06] Jeremy Garcia. 2005 linuxquestions.org members choice award winners

announced. online, March 2006.

[Gar07] Jeremy Garcia. 2006 linuxquestions.org members choice award winners

announced. online, February 2007.

[Gar08] Jeremy Garcia. 2007 linuxquestions.org members choice award winners.

online, February 2008.

[Gar09] Jeremy Garcia. 2008 linuxquestions.org members choice award winners.

online, February 2009.

[Gar10] Jeremy Garcia. 2009 linuxquestions.org members choice award winners.

online, February 2010.

[git10] gitweb. Kde gitweb - amarok.git/tags. online, October 2010.

[Gra10] James Gray. Readers’ choice awards 2010. online, October 1010.

[Gra08] James Gray. Readers’ choice awards 2008. online, May 2008.

[Gra09a] Chris Grams. Tom sawyer, whitewashing fences, and building commu-

nities online. online, September 2009.

[Gra09b] James Gray. Readers’ choice awards 2009. online, June 2009.

[Gra10a] Chris Grams. Community-building tip: surprise is the opposite of en-

gagement. online, April 2010.

[Gra10b] Chris Grams. Trust: the catalyst of the open source way. online, June

2010.

[HB03] Pamela J. Hinds and Diane E. Bailey. Out of sight, out of sync: Under-

standing conflict in distributed teams. Organization Science, 14:615–

632, November 2003.

[Hin07] Brian Hindo. At 3m, a struggle between efficiency and creativity -

how ceo george buckley is managing the yin and yang of discipline and

imagination. online, June 2007.

[HJ07] Jesper Holck and Niels Jørgensen. Continuous integration and qual-

ity assurance: a case study of two open source projects. Australasian

Journal of Information Systems, 11(1), 2007.

Bibliography 119

[HS02] T. J. Halloran and William L. Scherlis. High quality and open source

software practices. In Meeting Challenges and Surviving Success: The

2nd Workshop on Open Source Software Engineering, pages 26 – 28,

2002.

[IH92] R. Duane Ireland and Michael A. Hirc. Mission statements: Importance,

challenge, and recommendations for development. Business Horizons,

35(3):34 – 42, 1992.

[Lev00] Ira M. Levin. Vision revisited. The Journal of Applied Behavioral

Science, 36(1):91–107, 2000.

[Lip96] Mark Lipton. Demystifying the development of an organisational vision.

Sloan Management Review, 37(4), Summer 1996.

[McC99] Steve McConnell. Open-source methodology: Ready for prime time?

IEEE Software, 16(4):6–8, 1999.

[Moe06] Erik Moeller. Rfc: Mission & vision statements of the wikimedia foun-

dation. email, November 2006.

[Mor06] Betsy Morris. Fortune: The new rules. online, July 2006.

[N+] Dave Neary et al. Cookies licking - community management wiki. on-

line.

[Nea11] Dave Neary. Drawing up a roadmap. online, February 2011.

[Ont10] Ontoprise. News - smw+ semantic enterprise wiki. online, November

2010.

[Ott10] Tobias Otte. An Investigation into quality assurance of the Open Source

Software Development model. PhD thesis, University of Wolverhamp-

ton, June 2010.

[Per98] Bruce Perens. The open source definition. online, February 1998.

[Pin09] Lydia Pintscher. we’re testing the water for everyone. online, July 2009.

[Pin10] Lydia Pintscher. Mentoring in free software projects - a review of 6

years of gsoc and sok in kde and what we learned so far. In Akademy

2010. KDE, July 2010.

[Poo10] Jos Poortvliet. Strategy sucks. online, September 2010.

[Pro97] Debian Project. Debian social contract - the debian free software guide-

lines (dfsg). online, July 1997.

[Ray98] Michael E. Raynor. That vision thing: Do we need it? Long Range

Planning, 31(3):368 – 376, 1998.

120 Bibliography

[Ray01] E.S. Raymond. The cathedral and the bazaar: musings on Linux and

Open Source by an accidental revolutionary. O’Reilly Series. O’Reilly,

2001.

[Rid05] Jonathan Riddell. Kde’s switch to subversion complete. online, May

2005.

[SCA06] SCAMPI A Upgrade Team. Standard cmmi appraisal method for pro-

cess improvement (scampism) a, version 1.2: Method definition docu-

ment. online, August 2006.

[Sei10] Aaron Seigo. +10 on linux journal reader’s choice awards. online,

November 2010.

[Sta86] Richard Stallman. The free software definition. online, February 1986.

[Tar97] Eugen Tarnow. A recipe for mission and vision statements. Journal of

Marketing Practice: Applied Marketing Science, 3(3):184–189, 1997.

[vKSL03] Georg von Krogh, Sebastian Spaeth, and Karim R. Lakhani. Commu-

nity, joining, and specialization in open source software innovation: a

case study. Research Policy, 32(7):1217–1241, July 2003.

[WHP+09] Axel Winkelmann, Sebastian Herwig, Jens Pöppelbuß, Daniel Tiebe,

and Jörg Becker. Discussion of functional design options for online rat-

ing systems: A state-of-the-art analysis. In 17th European Conference

on Information Systems (ECIS 2009), 2009. Verona, Italy.

[Wik10] Wikimedia. Wikimedia traffic analysis report - browsers. online, Octo-

ber 2010.

[WM07] Christian Wagner and Ann Majchrzak. Enabling customer-centricity

using wikis and the wiki way. Journal of Management Information

Systems, 23(3):17–43, January 2007.

[YYSI00] Yutaka Yamauchi, Makoto Yokozawa, Takeshi Shinohara, and Toru

Ishida. Collaboration with lean media: how open-source software suc-

ceeds. In Proceedings of the 2000 ACM conference on Computer sup-

ported cooperative work, CSCW ’00, pages 329–338, New York, NY,

USA, 2000. ACM.

[ZE03] Luyin Zhao and Sebastian Elbaum. Quality assurance under the open

source development model. J. Syst. Softw., 66:65–75, April 2003.

	Contents
	List of Figures
	List of Tables
	List of Listings
	List of URLs
	Acronyms
	1 Introduction
	2 Fundamentals
	2.1 Collaboration and transparency
	2.2 Free Software and Open Source
	2.3 Halo
	2.3.1 History
	2.3.2 Goals
	2.3.3 Culture
	2.3.4 Structure

	2.4 Amarok
	2.4.1 History
	2.4.2 Goals
	2.4.3 Culture
	2.4.4 Structure

	2.5 MediaWiki
	2.6 Semantic MediaWiki
	2.7 KDE

	3 Related Work
	3.1 Mapping of development processes
	3.2 Communication and coordination in distributed teams
	3.3 Collaboratively working on a vision
	3.4 Collaboratively creating a roadmap
	3.5 Quality Assurance

	4 Analysis of the Current Development Processes
	4.1 Halo
	4.1.1 Release Cycle
	4.1.2 Activities
	4.1.2.1 Feature design
	4.1.2.2 Writing code
	4.1.2.3 Quality assurance
	4.1.2.4 User engagement and support
	4.1.2.5 Contributor engagement
	4.1.2.6 Promotion

	4.1.3 Problems
	4.1.3.1 Need for clearer communication of vision/goal
	4.1.3.2 Need for better coordination of QA
	4.1.3.3 Need for more transparency and coordination
	4.1.3.4 Need for more user-input
	4.1.3.5 Other problems

	4.2 Amarok
	4.2.1 Release Cycle
	4.2.2 Activities
	4.2.2.1 Writing Code
	4.2.2.2 Release Management
	4.2.2.3 Quality assurance
	4.2.2.4 User engagement and support
	4.2.2.5 Team engagement and management
	4.2.2.6 Promotion

	4.2.3 Problems
	4.2.3.1 Lack of a clear vision/goal
	4.2.3.2 Lack of a road map
	4.2.3.3 Need for more transparency and coordination
	4.2.3.4 Need for better coordination of QA
	4.2.3.5 Other problems

	4.3 Comparison and conclusion

	5 Design of an Improved Development Process
	5.1 Requirements, expectations and constraints
	5.2 Communication and coordination in distributed teams
	5.2.1 Team and task awareness
	5.2.2 Release schedule
	5.2.3 Code ownership
	5.2.4 Checklists
	5.2.5 Building trust through engagement
	5.2.6 Connecting commits

	5.3 Collaboratively working on a vision
	5.3.1 Creating and communicating a vision
	5.3.2 Collecting updates for a vision

	5.4 Collaboratively creating a roadmap
	5.4.1 Life cycle of a feature request
	5.4.2 Communicating expectations around feature requests
	5.4.3 Scope and difficulty of feature requests
	5.4.4 Claiming and assigning feature requests
	5.4.5 Feature request page and overview

	5.5 Quality Assurance
	5.5.1 Encouraging testing by a large group
	5.5.2 Making problematic areas more visible

	5.6 Building blocks

	6 Implementation of an Improved Development Process
	6.1 Roll-out scenario
	6.2 Communication and coordination in distributed teams
	6.2.1 Team dashboard
	6.2.2 Release dashboard
	6.2.3 Release calendar
	6.2.4 Code ownership
	6.2.5 Checklists
	6.2.6 Commit hooks

	6.3 Collaboratively working on a vision
	6.4 Collaboratively creating a roadmap
	6.5 Quality Assurance
	6.5.1 Encouraging testing by a large group
	6.5.2 Making problematic areas more visible

	7 Evaluation
	7.1 Survey
	7.1.1 Communication and coordination in distributed teams
	7.1.2 Collaboratively working on a vision
	7.1.3 Collaboratively creating a roadmap
	7.1.4 Quality Assurance

	7.2 Changes in the openness of the development processes

	8 Conclusions and Outlook
	A Release timelines
	B Interview questions
	C Mark-up
	D Checklists
	D.1 Halo
	D.2 Amarok

	E Evaluation questions
	E.1 Halo
	E.2 Amarok

	Bibliography

